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ABSTRACT	
	

	 The	 design	 and	 study	 of	 multiple	 RF	 direct	 digital	 manufactured	 (DDM)	 devices	 are	

presented	in	this	work.	A	2.45	GHz,	180°	hybrid	coupler	is	designed	to	provide	the	space	required	

for	other	system	components.	The	coupler	 is	designed	and	manufactured	on	a	32	mil	Rogers	

4003C	substrate	and	adapted	to	a	100%	in-fill	acrylonitrile	butadiene	styrene	(ABS)	substrate.	A	

size	reduction	of	66%	is	accomplished	with	a	bandwidth	of	16%.	A	DDM	Ku	band	connector	is	

modeled	and	fabricated	using	varying	relative	dielectric	constants	of	50%	and	100%	in-fill	ABS.	

The	connector	maintains	less	than	0.45	dB	of	insertion	loss	up	to	14	GHz	and	greater	than	10dB	

of	return	loss	up	to	15	GHz.	A	lumped	component	model	is	also	developed	to	model	the	damaged	

transition	of	the	connector	with	agreement	to	numerical	electromagnetic	simulation	software.	

Lastly,	a	thermal	and	RF	study	of	a	Ku	band	power	amplifier	(PA)	is	performed.	Two	5	mil	100%	

in-fill	ABS	PA	test	fixtures	are	fabricated	with	a	varying	number	of	vias.	The	designs	are	biased	at	

various	operating	points	to	collect	thermal	and	RF	data.	The	PA	operates	at	151°C	before	melting	

the	ABS	 substrate.	A	 thermal	model	 is	developed	 from	 the	measurement	data	 to	predict	 the	

temperatures	at	given	power	levels	with	good	agreement	between	simulation	and	model	data.	
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CHAPTER	1:	INTRODUCTION	
	

	 3D	printing	is	a	well-known	term	from	hobbyists	to	scientists	and	engineers.	However,	

not	so	common	knowledge	is	that	3D	printing	and	rapid	prototyping	(RP)	have	been	around	since	

the	late	1980’s.	The	first	RP	technology	was	the	stereolithography	(SL)	machine	first	patented	by	

Charles	Hull	in	1984.	The	SL	machine	uses	a	UV	curable	liquid	and	a	focused	UV	light	to	create	3D	

objects	layer	by	layer	[1].	In	1989,	the	famous	fused	deposition	modeling	(FDM)	technology	was	

invented	by	Scott	Crump	[2].	Since	then,	the	patent	has	expired	and	many	industries	have	moved	

in	 to	 take	 advantage	 of	 the	 technology.	 From	 aerospace	 to	 biological	 devices,	 3D	 printing	 is	

applicable	in	many	fields.	3D	printing	isn’t	a	replacement	for	traditional	high	yield	manufacturing	

processes.	 However,	 there	 is	 a	 clear	 benefit	 of	 3D	 printing	when	manufacturing	 low	 volume	

highly	customized	parts	or	for	rapid	prototyping	of	a	concept	design	to	later	build	with	traditional	

manufacturing	methods.		

1.1	Thesis	Overview	and	Contributions	

	 The	purpose	of	this	thesis	is	the	use	of	direct	digital	manufacturing	(DDM)	to	design	RF	

and	microwave	devices.	3D	printing	RF	devices	presents	many	challenges	due	to	the	stringent	

requirements	 on	 line	 dimensions,	 relative	 dielectric	 constants,	 conductivity	 and	 thermal	

properties.	 When	 operating	 at	 higher	 frequencies	 parts	 reduce	 in	 size	 and	 this	 increases	

manufacturing	difficulty.	To	limit	these	challenges,	a	high	precision	printer	is	needed.	The	nScrypt	

3Dn	series	printer	with	nFD	and	SmartPump	Technologies	enables	the	high	precision	extrusion	
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and	dispensing	of	thermoplastics	and	conductive	pastes,	respectively	[3,	4].	The	thermoplastic	

used	 in	 this	work	 is	 acrylonitrile	butadiene	 styrene	 (ABS).	Also	used	are	DuPont	CB028	 silver	

conductor	[5]	which	is	micro-dispensed	using	the	SmartPump	and	Epoxy	Technology	H20E	epoxy	

[6]	is	used	for	assembly	purposes.	Chapter	2	will	discuss	the	basic	background	of	3D	printing	and	

the	technologies	used.	

	 When	considering	a	design,	the	cost	per	area	is	a	main	contributor	to	design	decisions.	

Additionally,	when	space	isn’t	available	it’s	important	that	designers	find	ways	of	miniaturizing	

components	to	meet	design	specifications	and	packaging	requirements.	The	size	reduction	of	a	

2.45	GHz,	180°	hybrid	coupler	is	the	first	major	contribution	of	this	thesis,	as	presented	in	Chapter	

3.	 The	 miniaturization	 of	 the	 hybrid	 coupler	 is	 accomplished	 by	 using	 capacitively	 loaded	

transmission	lines.	This	reduces	the	size	of	the	transmission	lines	while	maintaining	the	phase	

characteristics.		

	 The	 second	major	 contribution	of	 this	 thesis	 is	 the	demonstration	of	 a	 Ku	band	DDM	

connector.	 Chapter	 4	 examines	 the	 utility	 of	 the	 time	 domain	 reflectometry	 (TDR)	 tool	 in	

designing	the	connector.	Multiple	parameter	sweeps	are	performed	to	provide	insight	into	the	

contributing	factors	of	impedance	mismatches	at	discontinuities.	Also,	an	embedded	semicircular	

transition	is	developed	to	convert	the	impedances	and	electromagnetic	field	configurations	of	a	

coaxial	connector	to	a	microstrip	line.		

	 Chapter	 5	 details	 the	 last	 contribution	 of	 this	 thesis,	 with	 the	 study	 of	 the	 thermal	

performance	of	a	Ku-band	power	amplifier	(PA)	and	its	effect	on	RF	performance.	A	simulation	

model	for	the	test	fixture	is	also	developed	that	can	be	used	to	determine	if	a	given	material	will	

sufficiently	diffuse	the	heat	away	from	the	PA	chip.	
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	 Chapter	6	will	conclude	the	thesis	with	a	summary	of	the	research	and	recommendations	

for	 future	work.	Appendix	A	provides	 information	about	assembly	 techniques	used	as	well	as	

special	considerations	when	using	simulation	software.	Appendix	B	provides	information	about	

the	printing	procedure	for	the	DDM	connector.	
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CHAPTER	2:	DIRECT	DIGITAL	MANUFACTURING	BACKGROUND	
	

2.1	Introduction	

	 There	are	multiple	forms	of	direct	digital	manufacturing	(DDM)	with	stereolithography	

(SL),	 selective	 laser	 sintering	 (SLM),	and	 fused	deposition	modeling	 (FDM)	being	a	 few	of	 the	

popular	 technologies	 [7].	 All	 three	 technologies	 fabricate	 parts	 from	CAD	 files	 layer-by-layer,	

however	the	process	with	which	they	build	the	3D	parts	varies.	SL	uses	a	laser	and	photosensitive	

resin	to	build	its	parts.	SL	and	SLM	are	alike,	but	 instead	of	a	photosensitive	resin	SLM	uses	a	

powdered	material.	FDM,	the	technology	used	in	this	work,	uses	a	thermoplastic	filament	which	

is	melted	with	an	extrusion	head.	FDM	typically	builds	 the	model	 from	the	bottom,	however	

depending	on	the	structure	this	can	vary.	Section	2.2	will	 introduce	the	FDM	process	and	the	

required	components.	Section	2.3	will	cover	micro-dispensing	of	conductive	pastes	that	are	used	

mainly	for	transmission	lines	and	to	fill	via	holes.	

2.2	Fused	Deposition	Modeling	

	 FDM	is	an	extrusion	based	3D	printing	technology.	Figure	2.1	shows	a	basic	desktop	3D	

printer	setup.	There	are	many	different	thermoplastic	filaments	available	to	include:	acrylonitrile	

butadiene	styrene	(ABS),	polylactic	acid	(PLA)	and	polyetherimide	(ULTEM).	Filaments	are	sold	by	

the	spool	and	are	fed	into	the	filament	feeding	system.	The	filament	feeding	system	consists	of	

various	components	to	pull	the	filament	from	the	spool	to	the	heating	element.	Depending	on	
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the	type	of	material	used,	the	heating	element	temperature	will	be	adjusted	to	maintain	flow	of	

the	material	onto	the	heated	print	bed.	From	there	the	model	will	be	built	from	the	bottom	up.	

	

Figure	2.1	Basic	desktop	3D	printer	setup	
	
	 3D	printing	technology	provides	a	designer	with	many	options	to	customize	designs.	One	

such	customization	is	in-fill	percentage.	In-fill	percentage	is	the	amount	of	material	which	will	be	

used	 to	 fill	 the	 inside	of	 the	model.	 Figure	2.2a	 shows	 three	different	 in-fill	 percentages	of	a	

rectilinear	fill	pattern.	The	fill	pattern	is	exactly	what	it	sounds	like,	the	pattern	that	will	be	used	

to	fill	the	inside	of	the	model.	Figure	2.2b	shows	the	three	fill	patterns	which	are	just	a	few	of	

many	types.	The	fill	pattern	will	maintain	the	in-fill	percentage	regardless	of	the	pattern	chosen.	

By	varying	the	 in-fill	percentage,	 the	dielectric	constant	can	be	changed	to	accommodate	the	

design.	Both	50%	and	100%	in-fill	percentages	are	used	in	this	work,	with	a	rectilinear	pattern	

(Figure	2.2a).	
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(a)	

	
(b)	

Figure	2.2	3D	printer	design	settings.	(a)	varying	in-fill	percentage	(b)	varying	in-fill	pattern	

	 The	3D	printing	 system	used	 in	 the	presented	 research	 is	 the	nScrypt	3Dn	 series.	 The	

nScrypt	system	utilizes	a	filament	feeding	system	called	the	nFD.	The	nFD	movement	is	restricted	

to	 the	 z-axis	 only.	 Where	 the	 heated	 print	 bed	 restricts	 movement	 to	 the	 x-y	 axis.	 The	 x-y	

resolution	of	the	nScrypt	printer	is	10	nm	–	1	μm	and	in	the	z	direction	is	0.5	μm	[8].	This	high	

resolution	provides	the	precision	needed	to	print	quality	RF	and	microwave	devices.	

2.3	Micro-Dispensing	

	 Micro-dispensing	is	a	technology	that	enables	the	user	to	print	a	variety	of	materials	with	

varying	viscosities	including	epoxies	and	conductive	inks	with	high	precision.	The	ability	to	print	
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lines	as	small	as	25	μm	is	possible	with	nScrypt	SmartPump	technology	[4].	The	configuration	of	

the	micro-dispensing	system	is	shown	in	Figure	2.3.	Conductive	ink,	e.g.	DuPont	CB028,	is	loaded	

into	a	syringe	and	connected	to	the	SmartPump.	A	computer	controls	the	dispensing	according	

to	an	input	file	of	the	electronic	circuit	the	user	would	like	to	print.	

	
Figure	2.3	Micro-dispensing	system	used	to	print	conductive	ink	

2.4	Conclusion	

	 FDM	and	micro-dispensing	alone	are	powerful	technologies,	but	together	the	possibilities	

are	endless.	3D	printing	provides	the	designer	with	added	flexibility	 in	the	types	of	structures	

that	are	possible.	Varying	the	in-fill	percentage	allows	the	dielectric	constant	to	be	varied	layer-

by-layer.	Multiple	layers	of	thermoplastics	and	conductive	inks	provide	flexibility	and	a	low-cost	

solution	to	traditional	manufacturing	technologies.	Lastly,	it	provides	the	ability	to	print	multi-

material	circuits	and	decreases	the	time	to	a	first	pass	design.		
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CHAPTER	3:	2.45	GHZ	HYBRID	COUPLER	

3.1	Introduction	

	 Couplers	are	not	new	to	microwave	engineering.	They	have	been	used	in	various	designs	

throughout	history	to	include:	baluns,	mixers,	and	amplifiers	[9,	10].	The	topologies	of	hybrids	

provide	either	0°,	90°	or	180°	phase	difference	at	the	output	ports.	The	focus	of	this	research	is	

in	a	DDM	fabricated	180°	hybrid	coupler	that	is	used	to	feed	the	two	ports	of	a	circularly	polarized	

antenna.	The	coupler	operating	frequency	is	2.45	GHz	and	requires	a	180	±	5°	phase	difference	

between	the	coupled	and	through	ports.	The	main	driving	requirement	of	the	design	is	the	size	

of	the	coupler,	which	needs	to	be	less	than	736	mm2.	The	small	size	will	provide	the	space	needed	

for	other	system	components	on	a	phased	array	unit	cell.	In	section	3.2	the	general	theory	behind	

the	hybrid	coupler	will	be	presented.	A	brief	derivation	will	be	discussed	to	provide	a	basis	for	its	

operation.	A	variety	of	techniques	to	reduce	the	size	of	the	coupler	will	be	discussed	in	Section	

3.3.	Although	the	coupler	will	be	fabricated	using	DDM,	it	is	important	to	fabricate	the	coupler	

using	 traditional	 (subtractive)	 printed	 circuit	 board	 (PCB)	 manufacturing	 techniques	 for	

comparison.	Section	3.4	is	a	discussion	on	the	simulation	and	measurement	results	of	the	PCB	

version	of	the	coupler.	Section	3.5	provides	the	simulation	versus	measured	results	of	the	DDM	

coupler.	
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3.2	Hybrid	Coupler	Background	

	
Figure	3.1	4-port	network	for	a	directional	coupler	

	 Directional	couplers	are	4-port	devices	(Figure	3.1)	that	can	be	reciprocal,	matched	at	all	

ports	 and	 lossless	 under	 specific	 conditions.	 The	 derivation	 of	 the	 directional	 coupler,	 as	

discussed	in	[11],	will	be	presented	below.	The	S-parameter	matrix	of	a	4-port	network	can	be	

simplified	if	it’s	reciprocal	(Sij	=	Sji):	

	 S =

S##	 S#%	 S#&	 S#'	
S#%	 S%%	 S%&	 S%'	
S#&	 S%&	 S&&	 S&'	
S#'	 S%'	 S&'	 S''

	 (3.1)	

and	matched	at	all	ports,	resulting	in	a	diagonal	matrix	(Sij=0	where	i	=	j):	

	 S =

0	 S#%	 S#&	 S#'	
S#%	 0	 S%&	 S%'	
S#&	 S%&	 0	 S&'	
S#'	 S%'	 S&'	 0

	 (3.2)	

If	the	network	is	lossless	it	needs	to	satisfy	the	unitary	properties	in	equations	3.3	and	3.4.		

	 S)*S)+*-
).# = 0, for	i ≠ j	 (3.3)	

	 S)*S)**-
).# = 1	 (3.4)	

Applying	equation	3.3	to	the	matrix	in	3.2	results	in	equations	3.5-3.6	below:	

	 S#'* S#& %- S%' % = 	0	 (3.5)	

	 S%& S#% %- S&' % = 	0	 (3.6)	
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One	solution	to	3.5	and	3.6	is	that	S14	and	S23	=	0.	This	solution	further	simplifies	the	S-parameter	

matrix	of	3.2,	shown	below:	

	 S =

0 S#% S#& 0
S#% 0 0 S%'
S#& 0 0 S&'
0 S%' S&' 0

	 (3.7)	

Applying	equation	1.4	to	the	matrix	in	1.7,	results	in	equations	1.8-1.11:		

	 S#% % + S#& % = 	1	 (3.8)	

	 S#% % + S%' % = 	1	 (3.9)	

	 S#& % + S&' % = 	1	 (3.10)	

	 S%' % + S&' % = 	1	 (3.11)	

The	 following	 relationships	 emerge	 when	 solving	 the	 system	 of	 equations:	 |S13|	 =	

|S24|and	 |S12|	 =	 |S34|.	 After	 further	 simplification	 and	 selection	 of	 the	 phase	 constants,	 the	

following	matrix	results:	

	 S =

0 α β 0
α 0 0 -β
β 0 0 α
0 -β α 0

	 (3.12)	

where	α	and	β	are	real	constants.	The	above	matrix	is	also	known	as	an	antisymmetric	coupler	

due	to	the	180°	phase	difference	between	S13	and	S24.	The	above	matrix	is	the	basis	for	the	hybrid	

coupler	and	will	be	used	in	the	design	process.	

	 What	 the	matrix	 in	 3.12	 describes	 is	 that	 depending	 on	 the	 input	 port(s)	 chosen,	 the	

designer	 can	 combine	 or	 divide	 the	 input	 power	 between	 a	 port(s)	 with	 a	 phase	 shift	 that	

depends	on	the	phase	reference	of	the	output	port(s).	For	example,	if	port	1	is	chosen	to	be	the	

input	port,	the	power	will	be	split	between	ports	2	and	3,	and	both	output	ports	will	be	in	phase.	
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However,	if	the	input	port	is	chosen	to	be	port	4,	the	power	will	be	split	between	ports	2	and	3,	

and	the	two	signals	will	be	180°	out	of	phase.	

	 To	determine	how	the	power	is	divided	the	designer	can	change	the	coupling	factor	and	

utilize	the	conservation	of	power	to	determine	the	power	split	between	ports,	equations	3.13	

and	3.14,	respectively.	

	 C = −20log β 	dB	 (3.13)	

	 α % + β % = 	1	 (3.14)	

The	coupling	factor	used	for	this	application	will	be	3	dB.	Utilizing	the	two	equations	above,	α	=	

β	=	0.5.	Matrix	3.12	can	then	be	simplified	to:	

	 S = +
%

0 1 1 0
1 0 0 −1
1 0 0 1
0 −1 1 0

	 (3.15)	

The	matrix	in	3.15	shows	that	when	an	excitation	is	applied	to	any	one	port,	the	resulting	outputs	

will	be	half	the	power	and	either	in	phase	or	out	of	phase,	depending	on	the	input	port.	

3.3	Modified	Directional	Coupler	

	 A	popular	topology	for	a	180°	hybrid	coupler	is	the	ring	hybrid	or	rat	race	(Figure	3.2).	The	

ring	 hybrid	 has	 the	 behavior	 of	 the	 S-parameter	 matrix	 in	 3.15.	 This	 section	 will	 cover	 the	

topology	and	simulation	information	for	the	3	dB	ring	hybrid	and	the	modified	ring	hybrid.		
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(a)	 	 	 	 	 	 (b)	

Figure	3.2	3	dB	hybrid	ring	coupler.	(a)	layout	(b)	fabricated	

Table	3.1	Design	requirements	for	the	3	dB	hybrid	coupler	

Parameter	 Requirements	
Layout	Size	 <	736	mm2	

Coupling	 <	4	dB	
Return	Loss	 >	10	dB	

Phase	Difference	(°)	 180°	±	5°	
Bandwidth	 15%	

	
	 The	 design	 requirements	 for	 the	 coupler	 are	 in	 Table	 3.1.	 Keysight	 Advanced	 Design	

System	(ADS)	is	used	to	realize	the	circuit	in	Figure	3.2.	The	substrate	used	for	this	simulation	is	

the	Rogers	4725JXR,	whose	material	properties	can	be	found	in	Table	3.2	[12].	ADS	Linecalc	is	

used	to	determine	the	widths	and	lengths	of	the	various	microstrip	lines.	The	same	dimensions	

and	 lengths	 can	 be	 calculated/verified	 using	 the	 various	 equations	 in	 [11].	 The	 resulting	

microstrip	dimensions	are	shown	in	Table	3.3.	
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Table	3.2	Material	properties	of	the	Rogers	4725JXR	laminate	

Parameter	 Value	
Dielectric	Constant	(Er)	 2.64	
Substrate	Height	(H)	 30.7	mil	

Conductor	Thickness	(T)	 25	μm	
Conductivity	(κ)	 5.8x107	Sm-1	

Loss	Tangent	(TanD)	 0.002	
	

Table	3.3	Dimensions	and	characteristic	impedance	of	the	3	dB	ring	hybrid	

Microstrip	Line	 Z0	 Width	 Arc	Length	
λ/4	 70.71	Ω	 1.11	mm	 21.21	mm	
3λ/2	 70.71	Ω	 1.11	mm	 63.62	mm	
Ports	 50	Ω	 2.09	mm	 9.47	mm	

	

	
(a)	 	 	 	 	 	 	 (b)	

Figure	3.3	Simulated	vs	measured	results	of	the	3	dB	hybrid	ring	coupler.		
(a)	S44,	S24,	S34	(b)	Unwrapped	phase	difference	between	output	ports		

Solid	–	Simulated	Dashed	–	Measured	

Table	3.4	Design	requirements	and	achieved	performance	of	the	ring	hybrid	

Parameter	 Requirements	 Achieved	
Layout	Size	 <	736	mm2	 3721	mm2	
Coupling	 <	4	dB	 <	4	dB	

Return	Loss	 >	10	dB	 >	15	dB	
Phase	Difference	(°)	 180°	±	5°	 180°	±	5°	

Bandwidth	 15%	 16%	
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	 The	 3dB	 hybrid	 ring	 coupler	 is	 simulated	 using	 an	 ADS	 momentum	 simulation.	 The	

simulated	 vs	measurement	 results	 for	 the	 circuit	 in	 Figure	 3.2	 are	 shown	 in	 Figure	 3.3.	 The	

simulation	 shows	 that	 the	 power	 division	 between	 the	 two	 outputs	 is	 3	 dB.	 Whereas,	 the	

measurements	have	an	output	power	of	3.5	dB	at	the	center	frequency	(Figure	3.3a).	Although,	

the	overall	trend	of	the	power	split	shows	agreement.	Figure	3.3b	shows	the	unwrapped	phase	

difference	between	the	two	output	ports.	The	phase	difference	of	the	simulated	and	measured	

circuit	is	179.8°	and	182°	at	the	center	frequency,	respectively.	Table	3.4	summarizes	the	results	

and	design	goals.		

	 Although	the	rat	race	coupler	provides	sufficient	performance	the	size	of	the	coupler	is	

too	large.	To	meet	this	requirement,	the	circuit	will	need	to	be	modified	to	reduce	the	size	while	

maintaining	the	RF	performance.	This	will	be	accomplished	through	miniaturization	techniques	

such	as	capacitive	loading	[10].	By	capacitive	loading	the	transmission	line	(TL),	the	designer	will,	

in	 effect,	 reduce	 the	 length	 while	 maintaining	 the	 same	 phase	 delay.	 Figure	 3.4	 shows	 the	

topology	of	a	λ/4	transmission	line	and	the	associated	ABCD	matrix.	The	equivalent	circuit	and	

associated	ABCD	matrix	used	to	miniaturize	the	λ/4	transmission	line	is	shown	in	Figure	3.5.	

	
(a)	

AC
'

BC
'

CC
'

DC
'
= 	

0 jZC
'

jYC
'

0 	

(b)	
Figure	3.4	λ/4	transmission	line	used	in	the	hybrid	coupler.		

(a)	equivalent	circuit	(b)	ABCD	matrix	
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(a)	

AG BG
CG DG

	= 	
cos βlJK + jYGZJK sin βlJK jZJK sin βlJK

2YGcos βlJK + j sin βlJK YJK + YG%ZJK jYGZJK sin βlJK + cos βlJK
	

(b)	
Figure	3.5	λ/4	equivalent	circuit.	(a)	network	topology	(b)	ABCD	matrix	

For	 the	 two	 transmission	 lines	 to	 exhibit	 the	 same	 RF	 behavior	 the	 ABCD	matrix	 of	 the	 two	

networks	must	be	equal:	

	 cos βlJK 	+ 	jZJKYGsin βlJK = 0	 (3.16)	

	 jZJK sin βlJK = jZC
'
	 (3.17)	

	 2YGcos βlJK 	+ 	jYJKsin βlJK 	+ 	jYG%ZJK sin βlJK = jYC
'
	 (3.18)	

	 jYGZJK sin βlJK + cos βlJK = 	0	 (3.19)	

Solving	equations	3.16-3.19	for	ZEQ,	Ya,	and	lEQ,	results	in	the	following	relationships:	

	 lJK =
C
M
	 (3.20)	

	 ZJK = 2ZN	 (3.21)	

	 CG =
#

%OPQP
	 (3.22)	

	 The	solutions	to	the	equivalent	network	in	Figure	3.5	result	in	a	transmission	line	which	

is	half	of	the	size	of	the	previous	rat	race	coupler	TL.	This	is	possible	due	to	the	shunt	capacitances	

defined	by	Equation	3.22.	A	similar	procedure	is	used	for	the	3λ/4	TL	of	the	ring	hybrid	in	Figure	

3.2.	Figure	3.6	shows	the	3λ/4	TL	and	the	respective	ABCD	matrix.	The	equivalent	pi	network	that	
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can	be	implemented	to	minimize	the	physical	length	of	the	transmission	line	is	shown	in	Figure	

3.7,	along	with	its	ABCD	matrix.		

	
(a)	

A&C
'

B&C
'

C&C
'

D&C
'
= 	

0 -jZ&C
'

-jY&C
'

0 	

(b)	
Figure	3.6	3λ/4	transmission	line	used	in	the	hybrid	coupler.		

(a)	equivalent	circuit	(b)	ABCD	matrix	

	
(a)	

AR BR
CR DR

= 	
1 + YZR ZR
2Y + Y%ZR YZR + 1

	

(b)	
Figure	3.7	3λ/4	equivalent	circuit.	(a)	network	topology	(b)	ABCD	matrix	

After	equating	the	two	matrices	(3.6b	and	3.7b)	and	solving	the	resulting	equations	the	following	

relations	are	obtained:	

		 L	 = %QP
OP

	 (3.23)	

	 CR =
#

%OPQP
	 (3.24)	

Using	equations	3.20-3.24,	and	the	equivalent	networks	for	the	λ/4	and	3λ/4	the	miniaturized	

ring	hybrid	is	determined,	as	shown	in	Figure	3.8.		
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Figure	3.8	Miniaturized	ring	hybrid	with	parallel	inductors	and	capacitors	

	 The	circuit	topology	of	Figure	3.8	is	simulated	in	an	ADS	schematic	using	ideal	components	

(capacitors,	inductors,	TL).	The	coupler	is	simulated	using	ADS	and	the	results	are	shown	in	Figure	

3.9.	The	capacitances,	inductances	and	transmission	line	properties/values	are	calculated	using	

the	equations	derived	above.	Figure	3.9a	shows	that	the	power	is	equally	split	with	the	insertion	

losses	 being	 approximately	 3	 dB	 at	 the	 design	 frequency	 of	 2.45	 GHz.	 The	 phase	 difference	

between	the	output	ports	is	within	±	5°	across	the	entire	bandwidth	(Figure	3.9b).	

	
(a)	 	 	 	 	 	 	 (b)	

Figure	3.9	Simulated	results	of	the	ideal	3	dB	modified	hybrid.	(a)	Insertion	and	Return	Loss	(b)	
Unwrapped	phase	difference	between	output	ports	



www.manaraa.com

	 	 18	

	 The	impedance	of	the	of	the	parallel	LC	is	high	at	the	design	frequency,	allowing	for	the	

circuit	in	Figure	3.8	to	be	simplified,	by	removing	the	two	components.	The	layout	of	the	resulting	

circuit	is	shown	in	Figure	3.10.		

	
Figure	3.10	Miniaturized	ring	hybrid	without	parallel	inductors	and	capacitors	

	 The	 simulation	 results	 of	 the	 ADS	 schematic	 in	 Figure	 3.10	 are	 shown	 in	 Figure	 3.11.	

Removing	 the	 parallel	 LC,	 changes	 the	 input	 return	 loss	 of	 the	 hybrid	 as	 well	 as	 the	 phase	

difference	between	 the	direct	 and	coupled	ports.	 The	 change	 in	 the	phase	difference	 can	be	

compensated	by	changing	the	value	of	Ca	to	1.5	pF	and	the	lengths	of	the	transmission	lines	to	

47°	(Figure	3.10).	The	simulation	results	of	the	modified	hybrid	are	shown	Figure	3.12.	Removing	

the	extra	components	will	reduce	the	overall	footprint	of	the	overall	coupler,	however	the	phase	

performance	 degrades.	 This	 performance	 degradation	 can	 be	 addressed	 when	 parasitic	

components,	interconnects	and	transmission	line	elements	are	introduced.	
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(a)	 	 	 	 	 	 	 (b)	

Figure	3.11	Simulation	results	of	the	ideal	hybrid	without	parallel	components.	
(a)	Insertion	and	Return	Loss	(b)	Unwrapped	phase	difference	between	output	ports	

	
(a)	 	 	 	 	 	 	 (b)	

Figure	3.12	Simulation	results	of	the	modified	ideal	hybrid	without	parallel	elements.	
(a)	Insertion	and	Return	Loss	(b)	Unwrapped	phase	difference	between	output	ports	

3.4	PCB	Version	Simulation	and	Measured	Results	

	 The	previous	sections	provided	the	foundation	for	the	design	of	a	reduced	size	ring	hybrid.	

In	 this	 section,	 the	parasitic	 design,	 simulation,	 and	measurement	 results	 are	presented.	 The	

substrate	used	in	the	development	of	the	design	is	a	32	mil	Rogers	4003C	laminate	[13],	whose	

substrate	properties	are	summarized	in	Table	3.4.	A	λ/8	transmission	line,	at	2.45	GHz,	has	the	

following	properties:	 length	of	9.88	mm,	width	of	0.44	mm	and	an	 impedance	of	100	Ω.	The	

coupler	 in	 Figure	 3.10	 is	 physically	 unrealizable	 due	 to	 the	 transmission	 line	 elements.	 The	

straight	transmission	lines	between	the	input	and	coupled	ports,	and	direct	and	isolation	ports	
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will	not	be	connected	in	the	form	of	Figure	3.10.	This	issue	is	solved	using	curved	transmission	

line	elements	as	shown	in	Figure	3.13.	The	tuned	circuit	schematic	and	layout	are	shown	in	Figure	

3.13a	and	Figure	3.13b,	respectively.	When	the	exact	dimensions	and	capacitor	values	are	used	

from	 Figure	 3.10	 the	 performance	 of	 the	 circuits	 is	 degraded.	 The	 curved	 transmission	 line	

lengths	and	capacitor	values	need	to	be	reduced	with	Ca,	Cb	and	Lλ/4	changed	to:	1	pF,	0.7	pF,	and	

9.48	mm,	respectively.	The	simulated	results	of	the	tuned	circuit	are	shown	in	Figure	3.14.		

Table	3.5	Material	properties	of	the	Rogers	4003C	laminate	

Parameter	 Value	
Dielectric	Constant	(Er)	 3.38	
Substrate	Height	(H)	 32	mil	

Conductor	Thickness	(T)	 35	μm	
Conductivity	(κ)	 5.8x107	Sm-1	

Loss	Tangent	(TanD)	 0.002	
	

	
(a)	 	 	 	 	 	 	 (b)	

Figure	3.13	Hybrid	coupler	with	modified	microstrip	lines	and	Modelithics	models.		
(a)	Schematic	(b)	Layout	with	coupler	dimensions	



www.manaraa.com

	 	 21	

	
(a)	 	 	 	 	 	 	 (b)	

Figure	3.14	Simulation	results	of	the	modified	hybrid	with	realistic	elements.		
(a)	Insertion	and	Return	Loss	(b)	Unwrapped	phase	difference	between	output	ports	

	 The	 hybrid	 in	 Figure	 3.13	 has	 a	 coupling	 value,	 at	 2.45	 GHz,	 of	 3.1	 dB	 and	 a	 phase	

difference	 of	 181°.	 The	 coupling	 value	 remains	 within	 3	 ±1	 dB	 across	 the	 bandwidth	 of	 the	

coupler.		

	
(a)	 	 	 	 	 	 	 (b)	

Figure	3.15	Hybrid	coupler	with	the	isolated	port	terminated	in	49.9	Ω.		
(a)	Schematic	(b)	Layout	with	coupler	dimensions	
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(a)	 	 	 	 	 	 	 (b)	

Figure	3.16	Comparison	of	the	modified	hybrid	with	and	without	a	49.9	Ω	terminated	isolation	
port.	(a)	Insertion	and	Return	Loss	(b)	Unwrapped	phase	difference	between	output	ports	

Solid	–	Without	Termination	Dashed	–	With	Termination	

	 The	simulation	data	of	the	4-port	hybrid	meets	all	the	design	requirements	of	Table	3.1.	

However,	 the	coupler’s	application	 requires	 that	 the	 isolation	port	be	 terminated	 in	50	Ω,	as	

shown	in	Figure	3.15.	The	simulation	results	in	Figure	3.16	show	that	the	changes	in	the	coupling,	

return	loss	and	phase	difference	between	the	4-port	hybrid	and	the	terminated	isolation	port	

hybrid	are	minimal.		

	
(a)	 	 	 	 	 	 	 (b)	

Figure	3.17	Layout	and	picture	of	the	Rogers	4003C	hybrid	coupler.	(a)	Layout	with		
dimensions	of	the	PCB.	(b)	Picture	of	the	fabricated	hybrid	coupler.	

	 To	fabricate	the	circuit,	feedlines	are	added	to	the	coupler.	The	layout	and	the	fabricated	

coupler	design	are	shown	in	Figures	3.17a	and	3.17b,	respectively.	The	ADS	co-simulation	and	

measured	data	are	shown	in	Figure	3.18.		
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(a)	 	 	 	 	 	 	 (b)	

	
(c)	

Figure	3.18	Simulated	vs	measurement	data	for	the	fabricated	coupler.		
(a)	Insertion	Loss	(b)	Return	Loss	(c)	Unwrapped	phase	difference	between	output	ports	

Solid	–	Simulated	Dashed	–	Measured	

	 There	 is	 good	 agreement	 between	 the	 simulated	 and	 measured	 data.	 The	 crossover	

frequency	for	the	insertion	losses	is	approximately	30	MHz	different	(Figure	3.17a).	However,	the	

3	dB	split	is	maintained	at	the	frequency	of	interest.	The	return	loss	of	all	ports	is	greater	than	15	

dB.	 The	 area	 of	 the	 Roger	 4003C	 coupler	 is	 231.35	 mm2	 providing	 a	 substantial	 decrease	

compared	to	the	rat	race	coupler	of	Section	3.3.	

	

	

	



www.manaraa.com

	 	 24	

3.5	DDM	Version	Simulation	vs	Measurement	Results	

	 The	 DDM	 version	 of	 the	 coupler	 is	 much	 like	 the	 Rogers	 4003C	 version.	 The	 main	

difference	is	in	the	width	of	the	lines	to	maintain	the	100	ohm	impedance	caused	by	the	relative	

dielectric	changes	(Table	3.6).		

Table	3.6	Material	properties	of	100%	in-fill	ABS	

Parameter	 Value	
Dielectric	Constant	(Er)	 2.423	
Substrate	Height	(H)	 32	mil	

Conductor	Thickness	(T)	 25	μm	
Conductivity	(κ)	 1.65x106	Sm-1	

Loss	Tangent	(TanD)	 0.006	
	

The	layout	and	the	fabricated	coupler	design	are	shown	in	Figures	3.19a	and	3.19b,	respectively.	

The	co-simulated	and	measured	data	are	shown	in	Figure	3.20.	The	coupler	area	is	248.82	mm2	

which	 is	66%	smaller	 than	the	requirement	of	736	mm2.	The	capacitor	values	did	not	change	

between	the	PCB	version	and	DDM	version	(Ca	=	1	pF	and	Cb	=	0.7	pF).	

	
(a)	 	 	 	 	 	 	 (b)	

Figure	3.19	Layout	and	picture	of	the	DDM	hybrid	coupler.	
(a)	Layout	with	dimensions	of	the	DDM	coupler.	(b)	Picture	of	the	fabricated	hybrid	coupler.	
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(a)	 	 	 	 	 	 	 (b)	

	
(c)	

Figure	3.20	Simulated	vs	measurement	data	for	the	fabricated	DDM	coupler.		
(a)	Insertion	loss	(b)	Return	loss	(c)	Unwrapped	phase	difference	between	output	ports	

Solid	–	Simulated	Dashed	–	Measured	

	 The	DDM	coupler	has	good	insertion	and	return	losses	at	the	design	frequency	and	the	

measurement	 to	 simulated	 results	 share	 the	 same	 trend.	 The	 insertion	 loss	 bandwidth	 is	

approximately	16%.	The	return	losses	maintain	10	dB	and	greater	up	to	2.9	GHz.	The	measured	

phase	difference	of	the	coupler	is	below	the	180°.	In	future	designs,	the	transmission	lines	should	

be	tuned	to	compensate	for	this	low	phase	difference.	
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3.6	Conclusion	

	 In	this	chapter,	the	design	and	fabrication	of	a	180°	hybrid	coupler	was	discussed.	The	

general	theory	provided	an	understanding	of	the	operation	of	the	coupler.	The	rat	race	coupler	

provided	a	good	starting	point	for	further	minimization	techniques.	Using	lumped	components	

and	 equivalent	 networks	 provided	 a	 means	 to	 reduce	 the	 size	 of	 the	 hybrid	 coupler	 while	

maintaining	 the	 performance	 of	 the	 coupler.	 Although,	 some	 of	 the	 components	 could	 be	

neglected	to	further	reduce	the	size.	This	reduction	in	components	and	size	comes	at	a	cost	of	

symmetry	and	performance.	But,	size	is	the	driving	requirement	to	the	design	so	the	performance	

degradation	is	acceptable.	Both	PCB	and	DDM	versions	of	the	reduced	size	coupler	showed	good	

simulation	to	measurement	performance.	However,	 in	the	future	the	output	phase	difference	

will	need	improvements.	
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CHAPTER	4:	KU-BAND	CONNECTOR	
	

4.1	Introduction	

	 Interest	 in	3D	printing	RF	devices	has	grown	over	the	past	few	years.	The	ability	to	3D	

print	filters,	power	dividers,	antennas,	and	phase	shifters	has	become	common	place	[14-17].	

However,	a	challenge	that	presents	itself	when	testing	or	connecting	these	components	to	other	

modules,	 is	a	 robust	connector	 that	can	be	embedded	and	printed	with	 the	design	 itself.	For	

example,	if	each	component	on	a	unit	cell	needed	to	be	tested,	the	designer	would	have	to	print	

the	unit	cell	and	buy	off	the	shelf	parts	and	assemble	the	connectors	as	a	post	processing	step.	

However,	if	a	3D	printed	connector	could	be	printed	along	with	the	structure	all	the	user	would	

have	to	do	is	connect	the	coaxial	cable.	This	would	reduce	the	time	to	testing	and	the	unnecessary	

temperature	exposure	to	cure	the	silver	epoxies.	In	this	chapter,	the	general	design	procedure	of	

the	 DDM	 connector	 (Section	 4.2),	 the	 design	 of	 the	 test	 structure	 (Section	 4.3),	 the	 design	

considerations	(Section	4.4),	the	simulated	vs	measured	results	(Section	4.5),	and	the	transition	

modeling	(Section	4.6)	will	be	covered.	

4.2	DDM	Connector	Design	

	 The	subminiature	version	a	(SMA)	to	slip	on	adapter	used	for	the	design	is	the	Konnect	RF	

model	number	KAD178244,	which	has	an	upper	frequency	of	18	GHz	[18].	The	adapter	is	a	SMA	

to	slip-on	adapter.	The	adapter	 is	cross	sectioned	to	determine	the	different	dimensions	 that	

would	be	inaccessible	otherwise.	The	adapter	and	a	cross	section	of	the	adapter	are	shown	in	
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Figure	4.1.	The	design	of	the	Direct	Digital	Manufactured	(DDM)	connector	is	constrained	by	the	

dimensions	of	the	commercial	off-the-shelf	(COTS)	adapter	(Figure	4.1a).	The	DDM	connector	will	

also	be	referred	to	as	a	receptacle	 in	this	work,	however	they	refer	to	the	same	thing	(Figure	

4.2a).	Table	4.1	lists	the	dimensions	of	a	50-ohm	coaxial	line	as	well	as	the	DDM	connector.	The	

COTS	adapter	dimensions	on	the	male	end	are	used	as	the	starting	point	for	the	DDM	connector,	

which	 is	 designed	 using	 Computer	 Simulation	 Technology	 (CST)	 numerical	 electromagnetic	

simulation	software.	All	TDR	simulations	are	performed	using	CST	and	the	S-parameter	data	is	

verified	using	Ansys	High	Frequency	Structural	Simulator	(HFSS).	

	

(a)	 	 	 	 	 	 	 (b)	
Figure	4.1	Konnect	RF	KAD178244	adapter	used	as	an	interface	between	an	SMA	assembly		

and	the	DDM	connector.	(a)	cross-section	(b)	connector	

Table	4.1	50-ohm	coaxial	line	and	DDM	connector	dimensions	and	parameters	

Parameter	 50-ohm	coaxial	line	 DDM	
Outer	Diameter	(mm)	 4	 6.2	
Inner	Diameter	(mm)	 1.25	 1.7	
Dielectric	Constant	 2.1	 2.4	

Loss	Tangent	 0.001	 0.006	
Length	(mm)	 12.75		 4.5	
Z0	(ohm)	 48.125	 50.0	
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	 Understanding	 the	 limiting	 factors	 of	 the	 connector	 is	 accomplished	 by	modeling	 the	

connector	in	CST	and	performing	various	simulations.	To	avoid	an	overly	complicated	model	of	

the	 COTS	 adapter,	 a	 50-ohm	 coaxial	 line	 is	 used	 in	 the	 simulations	 as	 outlined	 in	 Table	 4.1.	

Similarly,	the	DDM	receptacle	is	modeled	using	the	tabulated	data	of	Table	4.1.		

	 The	time	domain	reflectometry	(TDR)	plot	of	the	connector	provides	insight	into	changes	

in	impedance	along	the	structure	and	the	distance	at	which	discontinuities	occur.	Equation	4.1	is	

used	to	understand	the	discontinuity	and	its	effect	on	impedance	[11].	If	the	impedance	on	a	TDR	

plot	results	in	a	low	impedance	spike	this	is	due	to	the	capacitance	increasing	or	the	inductance	

decreasing	 in	 the	 transmission	 line.	 In	 contrast,	 if	 the	 impedance	 increases	 this	 is	due	 to	 the	

inductance	increasing	or	the	capacitance	decreasing.		

	 Z = T
U
		 (4.1)	

Equation	4.2	is	used	to	determine	the	time	to	the	discontinuity	from	the	SMA	end	of	the	COTS	

adapter	(Figure	4.1)	[19].	The	time	calculated	corresponds	to	the	interface	between	the	COTS	

adapter	and	DDM	receptacle	(Figure	4.2a).	Where	t	is	the	time	to	the	discontinuity,	in	seconds,	

lW	is	the	length	of	the	nth	material,	in	meters,	and	ϵYW	is	the	dielectric	constant	of	the	nth	material.	

For	example,	from	Table	4.1,	the	COTS	adapter	dielectric	constant	is	2.1	and	has	a	length	of	12.75	

mm	and	the	DDM	connector	dielectric	constant	is	2.4	and	has	a	length	of	4.5	mm.	Using	Equation	

4.2,	the	time	(t)	to	the	discontinuity	(Figure	4.2a)	is	0.17ns.	

	 t =
%Z[ \][

^
+	

%Z_ \]_

^
+ ⋯+ %Za \]a

^
		 (4.2)	

	 Figure	4.2,	shows	the	model	of	the	connector	and	the	parametric	sweep	of	the	via	offset.	

As	shown	in	Figure	4.2a,	there	is	a	discontinuity	in	both	the	size	of	the	structures	and	the	material	
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properties	when	connecting	the	COTS	adapter	to	the	DDM	receptacle.	The	discontinuity	causes	

a	capacitance	increase	due	to	the	higher	relative	dielectric	constant	of	100%	in-fill	ABS,	resulting	

in	an	impedance	reduction.	Offsetting	the	via	into	the	DDM	connector	results	in	extra	inductance	

that	counter	acts	the	capacitive	discontinuity.	A	smoother	transition	between	the	COTS	adapter	

and	the	DDM	receptacle	results	until	the	inductance	becomes	too	large.	Figure	4.2b	shows	that	

as	the	via	inset	is	increased	the	impedance	increases.	The	optimum	value	for	the	via	offset	is	0.25	

mm.	

	
(a)	

	
(b)	

Figure	4.2	Simulation	model	and	results	varying	the	via	offset.		
(a)	Initial	DDM	connector	design	(b)	TDR	plot	of	varying	via	offset	
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(a)	

	
(b)	

Figure	4.3	Simulation	model	and	results	varying	the	top	taper.		
(a)	Tapered	DDM	connector	design	(b)	TDR	Plot	with	varying	the	tapered	edge	

	 Tapering	the	DDM	connector,	as	shown	in	Figure	4.3a,	also	minimizes	the	abrupt	change	

in	the	impedance.	Figure	4.3b	shows	the	parametric	sweep	of	the	tapered	edge.	The	top	taper	

parameter	is	the	difference	between	the	outer	radius	of	the	DDM	connector	and	the	top	radius	

of	 the	 taper	 (Figure	 4.3a).	 Varying	 the	 taper	 doesn’t	 significantly	 impact	 the	 impedance.	

However,	the	taper	reduces	the	mechanical	stresses	introduced	by	the	compression	design	of	

the	slip-on	connector.	The	COTS	adapter	 in	Figure	4.1a	has	a	compression	fitting	on	the	DDM	

connector	end.	When	mating	the	COTS	adapter	and	the	DDM	connector	the	taper	allows	for	a	



www.manaraa.com

	 	 32	

smoother	transition	to	the	larger	radius	of	the	DDM	connector.	Without	the	taper,	there	would	

be	a	sharp	edge	at	the	COTS-DDM	interface	and	there	is	a	higher	risk	of	damaging	the	top	of	the	

connector.	

	 The	analysis	above	shows	that	a	via	offset	of	0.25	mm	and	a	top	taper	of	0.4	mm	are	the	

optimum	dimensions	 for	 the	connector	 interface.	The	S-parameter	performance	of	 the	COTS-

DDM	structure,	with	these	modifications,	is	shown	in	Figure	4.4.	The	design	results	in	a	return	

loss	of	23.8	dB	and	an	insertion	loss	of	0.2	dB	at	18	GHz.		

	
Figure	4.4	S-parameters	of	the	tapered	connector	design	

	 The	DDM	connector	performs	well	through	20	GHz.	However,	the	DDM	receptacle	must	

transition	to	a	transmission	line.	The	COTS	adapter	is	designed	to	mate	vertically	with	a	female	

connector.	In	this	case,	the	female	connector	is	the	DDM	receptacle.	Most	applications	require	

microstrip	lines	or	another	type	of	planar	transmission	line.	The	effects	of	transitioning	from	a	

vertical	 coaxial	 line	 to	 a	 horizontal	microstrip	 is	 a	 challenge.	 In	 the	 next	 section,	 the	 design	

challenges	and	solutions	will	be	discussed.	
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4.3	DDM	Test	Fixture	Design	

	 The	DDM	connector,	without	any	transitions	to	a	planar	transmission	line,	shows	good	S-

parameter	performance.	The	connector	maintains	greater	than	20	dB	of	return	loss	and	less	than	

0.25	dB	of	insertion	loss	through	20	GHz	(Figure	4.4).	However,	for	many	applications	the	need	

to	transition	to	a	planar	transmission	line	arises.	In	this	section,	we	will	present	the	initial	results	

of	a	vertical	transition	from	the	DDM	connector	to	a	microstrip	line,	optimization	of	a	microstrip	

taper,	and	the	optimization	of	an	embedded	semi-circular	transition.	

	 The	test	structure	consists	of	two	DDM	connectors	connected	by	a	50-ohm	microstrip	line	

(Figure	4.5).	A	125	μm	thick,	100%	in-fill	ABS	(εr	=	2.42	tanδ	=	0.006)	substrate	is	used	for	the	

substrate.	50%	in-fill	ABS	(εr	=	1.6	tanδ	=	0.003)	 is	used	for	the	DDM	connector,	 the	effect	of	

changing	the	dielectric	 is	described	further	 in	the	chapter.	The	microstrip	 line	dimensions	are	

calculated	using	linecalc	and	are	shown	in	Figure	4.5b.	The	COTS	adapter	mates	with	the	DDM	

receptacle	with	the	signal	pin	contacting	the	inner	conductor	of	the	DDM	receptacle.	There	is	a	

missing	ground	to	allow	the	via	to	make	the	connection	with	the	microstrip	line	on	the	bottom	

side	of	the	test	fixture	without	shorting	the	signal	pin	to	ground.	

	
(a)	

Figure	4.5	Simulation	model	of	the	DDM	test	fixture.	(a)	Cross-section	of	the	DDM	connector		
test	fixture	(b)	Bottom	view	of	the	test	structure	showing	the	microstrip	signal	line	
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(b)	

Figure	4.5	(Continued)	

	 The	simulation	results	for	this	circuit	are	shown	in	Figure	4.6.	The	test	fixture	performance	

cuts	off	around	4	GHz,	which	is	well	below	the	design	requirement	of	18	GHz.	The	cause	of	the	

degradation	 in	performance	 is	due	 to	 the	discontinuity	between	 the	DDM	connector	and	 the	

microstrip	line.	The	inductance	at	the	discontinuity	is	large	causing	the	impedance	to	increase	

significantly.	Another	cause	of	this	impedance	mismatch	is	the	missing	ground	plane	above	the	

microstrip	 line,	between	the	via	and	the	outer	conductor	of	 the	DDM	connector;	 refer	to	the	

zoomed	in	view	in	Figure	4.5a.	

	
Figure	4.6	S-parameters	of	the	initial	test	structure	design	
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	 A	few	techniques	can	be	used	to	reduce	the	inductance	and	discontinuity	at	the	coaxial-

microstrip	interface.	One	solution	would	be	to	add	a	microstrip	taper	at	the	location	where	the	

coaxial	signal	 line	meets	the	microstrip	line.	Figure	4.7	shows	a	TDR	plot	as	the	taper	width	is	

swept	from	0.5	mm	to	1.5	mm.		

	
Figure	4.7	TDR	plot	of	changes	in	taper	width	

	 The	taper	does	help	with	the	impedance	mismatch,	however	by	itself	the	taper	cannot	

sufficiently	 reduce	 the	 inductance	at	 the	discontinuity.	To	 further	 reduce	 the	 inductance,	 the	

ground	plane	at	the	coaxial-microstrip	boundary	needs	to	be	brought	closer	to	the	coaxial	signal	

line.	 This	 change	will	 increase	 the	 capacitance	of	 the	microstrip	 line,	 effectively	 reducing	 the	

impedance.	Figure	4.8a	shows	the	TDR	results	of	a	parameter	sweep	which	 insets	the	ground	

closer	to	the	signal	line	of	the	DDM	connector.	Figure	4.8b	shows	how	the	ground	is	inset	in	a	

semicircular	fashion.	The	inset	radius	is	the	distance	from	the	outside	of	the	connector	towards	

the	signal	line.	The	TDR	shows	that	the	1	mm	inset	radius	offers	the	best	impedance	match	along	

the	line.	However,	this	 is	deceiving	without	looking	at	the	S-parameters.	Figure	4.9	shows	the	

insertion	loss	and	return	loss	of	the	test	fixture	when	the	DDM	connector	has	a	1	mm	inset	radius.	
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Even	though	the	impedance	match	is	reasonable	the	added	structure	is	causing	the	E-field	from	

the	DDM	connector	to	abruptly	change	to	the	E-field	configuration	of	the	microstrip.		

	
(a)	

	
(b)	

Figure	4.8	Simulation	results	and	model	varying	the	inset	radius.		
(a)	TDR	Plot	varying	the	inset	radius	(b)	3D	model	including	the	inset	ground	
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Figure	4.9	S-parameters	of	the	DDM	test	structure	with	an	inset	radius	of	1	mm	

	 Even	 though	 the	 characteristic	 impedance	 is	matched,	 it	 is	 important	 that	 the	 E-field	

configuration	 is	also	converted	effectively	between	 the	different	 transmission	 line	 types	 [20].	

Figure	4.10	shows	the	E-field	at	the	transition.	At	the	transition	point	of	the	DDM	connector,	the	

E-fields	change	their	orientation	by	90°	to	transition	to	the	microstrip	line.	It	can	be	shown	that	

if	the	inset	ground	is	angled	upwards	into	a	semicircular	cone,	it	will	provide	a	ground	section	

that	 will	 allow	 the	 E-fields	 to	 gradually	 transition	 from	 a	 horizontal	 orientation	 to	 a	 vertical	

orientation.	

	
Figure	4.10	Electric	field	configuration	inside	the	DDM	connector	at	the	DDM-microstrip		

transition	
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	 The	inset	ground	is	transformed	into	a	cone	with	a	height	of	0.4	mm	and	an	inset	of	1	mm	

as	shown	in	Figure	4.11.	A	parameter	sweep	of	the	semi-circular	cone	radius	is	performed.	The	

TDR	and	S-parameters	of	the	sweep	are	shown	in	Figure	4.12.		

	
Figure	4.11	DDM	model	with	the	semi-circular	cone	transition	added	within	the	structure	

	 A	TDR	analysis	shows	that	the	impedance	is	matched	closest	when	the	Top	Radius	is	1.5	

mm.	The	S-parameters	with	a	Top	Radius	of	1.5	mm	provides	more	than	10	dB	of	return	loss	up	

to	19	GHz.		

	
(a)	

Figure	4.12	DDM	test	fixture	simulation	results	varying	the	transition	radius.	(a)	TDR	plot		
(b)	S-parameters	of	the	semi-circular	transition	(via	offset	=	0.25	mm	top	taper	=	0.4	mm	

microstrip	taper	width	=	1.5	mm	transition	height	=	0.4	mm)	
	dashed	line	–	1.75	mm,	solid	line	–	1.5	mm	
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(b)	

Figure	4.12	(Continued)	

	 Keeping	 the	 Top	 Radius	 parameter	 constant	 at	 1.5	mm	 the	 height	 parameter	 can	 be	

swept.	The	TDR	and	S-parameter	plots	are	shown	in	Figure	4.13.	The	S-parameters	for	0.5	mm,	

0.6	 mm	 and	 0.7	 mm	 are	 shown	 for	 comparison.	 It	 is	 observed	 from	 the	 TDR	 plot	 that	 the	

impedance	increases	with	the	height	parameter.	The	semi-circular	ramp	equalizes	the	impedance	

at	the	discontinuity	to	approximately	50	ohms.	

	
(a)	

Figure	4.13	DDM	test	fixture	simulation	results	varying	the	transition	height.	(a)	TDR	plot	(b)	S-
parameters	of	the	semi-circular	transition	(via	offset	=	0.25	mm	top	taper	=	0.4	mm	microstrip	

taper	width	=	1.5	mm	top	radius	=	1.5	mm)		
Solid	–	0.5	mm	Dash-Dot	–	0.6	mm	Dash	–	0.7	mm	
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(b)	

Figure	4.13	(Continued)	

	 The	 S-parameter	 data	 show	 that	 the	 change	 in	 height	 mainly	 affects	 mid-band	

parameters.	Figure	4.14	shows	the	E-field	configuration	with	the	optimized	(top	radius	=	1.5	mm	

and	transition	height	=	0.6	mm)	semi-circular	transition.	The	S-parameters	in	Figures	4.12b	and	

4.13b	show	that	no	changes	in	the	transition	height	or	radius	will	extend	the	operating	frequency	

of	the	test	fixture.	This	is	due	to	the	introduction	of	the	TE11	mode	within	the	DDM	connector.	

The	cut-off	frequency	for	the	DDM	connector	can	be	calculated	using	Equation	4.3	[11],	where	d	

is	the	outer	diameter	of	the	inner	conductor	and	D	is	the	inner	diameter	of	the	outer	conductor.	

Two	dielectric	constants	are	possible	by	changing	 the	 in-fill	percentage	of	 the	ABS	within	 the	

DDM	connector,	εr	=	1.6	(50%	in-fill)	and	εr	=	2.4	(100%	in-fill).	Using	the	actual	dimensions	of	the	

connector	(D	=	6.2	mm	and	d	=	2	mm)	the	predicted	cut-off	frequencies	assuming	εr	=	1.6	and	εr	

=	2.4	are	18	GHz	and	14.5	GHz,	respectively.	These	predicted	cut-off	frequencies	do	not	match	

the	 simulation	 results,	 however,	 because	 the	 radius	 isn’t	 constant	 when	 considering	 the	

embedded	transition.	The	value	 for	 the	 inner	diameter	of	 the	outer	conductor	 is	smaller.	 If	a	

diameter	is	chosen	close	to	the	average	value,	D	=	4.5	mm,	then	fc	≈	23	GHz	for	εr	=	1.6	and	fc	≈	

19	GHz	for	εr	=	2.4,	which	is	closer	to	the	simulated	result	in	Figure	4.15.	
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Figure	4.14	Electric	field	configuration	of	the	DDM	connector	with	the	optimized	transition	

	 f^ =
%UP

b cde \]
	 (4.3)	

	 One	way	 to	 increase	 the	operating	 frequency	of	 the	DDM	connector	 is	 to	 reduce	 the	

dielectric	 constant.	 This	 will	 increase	 the	 TE11	 mode	 cutoff	 frequency.	 An	 S-parameter	

comparison	between	the	DDM	connector	with	a	dielectric	constant	of	2.4	and	1.6	is	shown	in	

Figure	4.15.	

	
Figure	4.15	S-parameters	of	the	structure	with	different	dielectric	constants.	

Solid	–	2.4	Dash-Dot	–	1.6	
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4.4	Design	Considerations	

	 Manufacturing	 technology	 limitations	 and	 processes	 need	 to	 be	 considered	 when	

designing	any	structure,	RF	or	otherwise,	and	DDM	is	no	exception.	Considerations	include	layer	

print	order	as	well	as	vertical	conductor	printing.	When	designing	DDM	connectors	these	matters	

need	to	be	addressed.		

	 When	considering	the	print	order	of	the	connector	test	fixture	it	is	quickly	realized	that	

the	current	form	is	not	printable.	Figure	4.16	helps	demonstrate	the	issues	with	the	printability	

of	the	current	design.	If	the	microstrip	line	is	printed	first	the	conductor	would	be	printed	on	the	

heated	print	bed.		

	
Figure	4.16	Different	printing	orientations	to	demonstrate	the	issues	with	printing	the	DDM		

connector	test	fixture	

	 If	 the	DDM	connector	 is	 printed	 first,	 then	 there	would	be	air	 gaps	 and	 it	will	 not	be	

possible	 to	print	 the	rest	of	 the	circuit.	A	support	structure	could	be	used	to	solve	 this	 issue.	

However,	due	to	the	thin	substrate,	removing	the	supports	would	likely	damage	the	test	fixture.	

These	issues	can	be	resolved	by	first	printing	a	small	layer	of	ABS	(Figure	4.17).	

	
Figure	4.17	Modification	required	to	successfully	print	the	test	structure	
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Adding	a	0.1	mm	print	 layer	does	change	 the	performance	of	 the	connector	 test	 fixture.	The	

largest	 change	 occurs	 at	 18	 GHz	with	 an	 increase	 of	 insertion	 loss	 of	 approximately	 0.5	 dB.	

However,	the	return	loss	remains	greater	than	10	dB	through	18	GHz	(Figure	4.18).	

	 Vias	are	a	significant	challenge	with	the	CB028	printing	process,	and	vertical	printing	is	

not	currently	possible.	Since	the	vias	cannot	be	printed,	the	via	offset	will	be	removed.	Filling	the	

via	by-hand	isn’t	accurate	enough	to	guarantee	a	0.25mm	via	offset.		

	
Figure	4.18	S-parameters	of	the	test	structure	with	the	0.1	mm	print	layer	added	

	 The	S-parameter	results	of	the	test	fixture	with	and	without	a	via	offset,	from	Figure	4.3,	

are	 shown	 in	 Figure	 4.19.	 As	mentioned	 in	 Section	 4.2,	 the	 via	 offset	 has	 an	 impact	 on	 the	

impedance	match	at	the	COTS-DDM	connector	interface.	The	change	in	the	via	offset	reduces	

the	return	loss	at	mid-band	frequencies	and	increases	the	return	loss	at	the	upper	frequencies.	

The	change	in	the	offset	length	has	no	effect	on	the	insertion	loss	of	the	design.		
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Figure	4.19	S-parameters	of	the	test	structure	with	the	modified	via	offset.		

Solid	–	Via	offset	Dash-Dot	–	No	via	offset	

	 A	 final	 consideration	of	 the	design	 is	 the	mechanical	 structure	needed	 to	prevent	 the	

COTS	adapter	from	shifting	and	preventing	strains/stresses	on	the	DDM	connector.	To	address	

this	concern,	a	100%	infill	ABS	structure	is	designed	to	act	as	a	receptacle	for	the	COTS	adapter.	

The	structure	is	added	to	the	simulation	to	ensure	that	there	are	no	performance	degradations.	

Figure	4.20	shows	the	final	design	and	the	S-parameter	results	comparing	the	simulation	results	

with	and	without	the	mechanical	structure.	

	
(a)	 	 	 	 	 	 	 (b)	

Figure	4.20	Model	and	simulation	data	of	the	test	structure	with	and	without	the	mechanical	
structure.	(a)	3D	model	(b)	S-parameters		

Solid	–	Mechanical	Structure	Dash-Dot	–	No	Mechanical	Structure	
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4.5	Simulation	vs	Measurement	Results	

	 The	previous	sections	discussed	the	general	design	process	of	the	connector	design.	In	

this	 section,	 the	 simulated	 and	 measured	 results	 will	 be	 compared.	 A	 cross	 section	 of	 the	

fabricated	design	is	shown	in	Figure	4.21	along	with	a	picture	of	the	fabricated	structure	without	

the	mechanical	structure	or	COTS	adapters	attached.	

	
(a)	

	
(b)	

Figure	4.21	3D	model	and	fabricated	DDM	test	fixture.		
(a)	Illustration	of	fabricated	connector	model	(b)	3D	printed	structure	

	 The	connector	fixture	is	measured	with	its	reference	planes	set	at	the	COTS	adapter	input,	

not	 the	DDM	connector	 input.	A	Keysight	PNA-X	was	used	to	measure	the	structure	with	 the	

calibration	being	conducted	using	a	Keysight	85052B	3.5	mm	calibration	kit.	The	measured	and	

simulated	 results	 are	 shown	 in	 Figure	 4.22.	 The	measurement	 data	 doesn’t	 show	 very	 good	
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correlation	with	the	simulated	data	beyond	14	GHz.	The	return	loss	through	14	GHz	is	greater	

than	12	dB	and	the	insertion	loss	is	less	than	2.92	dB.	The	insertion	loss	of	the	measurement	data	

increases	substantially	at	15	GHz,	which	isn’t	predicted	in	the	simulation.	The	COTS	adapter	is	de-

embedded	and	the	losses	of	the	microstrip	are	removed.	The	resulting	insertion	loss	of	the	DDM	

connector	is	0.45	dB.	

	
Figure	4.22	Measured	vs	simulated	S-parameter	data	of	the	test	structure.	

Solid	–	Simulated	Dashed	–	Measured	

	 The	measurement	suggests	that	TE11	cutoff	is	being	shifted	to	a	lower	frequency.	The	two	

likely	causes	were	either	dielectric	constant	changes	or	 structural	 issues,	or	a	combination	of	

both.	The	easiest	issue	to	check	is	the	transition	within	the	connector.	This	is	the	easiest	due	to	

the	fragile	nature	of	the	DDM	connector	and	the	ease	with	which	it	can	be	separated	from	the	

connector	at	the	transition.	Upon	removal	of	the	DDM	connector	from	the	substrate,	with	the	

transition	exposed,	it	appears	that	the	printed	transition	wasn’t	completely	continuous	(Figure	

4.23).	This	could	be	due	to	the	subsequent	ABS	layer	printing	or	the	conductor	printing	itself.	The	

CB028	gap	was	introduced	into	the	DDM	connector	model	as	well	as	an	ABS	transition	as	shown	

in	Figure	4.23.	 If	 the	transition	was	not	damaged	there	would	be	no	gaps	 in	the	CB028	semi-
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circular	 transition	 (Figure	 4.23a).	 The	 gap	 in	 Figure	 4.23b	 is	 only	 introduced	 to	 model	 the	

damaged	transition	in	Figure	4.23a.	

	
(a)	 	 	 	 	 	 	 (b)	

	

	
(c)	

Figure	4.23	Fabricated	and	3D	model	of	damaged	transition.	(a)	Photo	of	the	semicircular		
transition	(b)	3D	model	of	the	modified	transition	accounting	for	the	conductor	gap	(c)	DDM		

embedded	transition	with	an	ABS	transition	height	added		

	 Three	parameters	are	introduced:	Gap	Radius,	Gap	Size,	and	ABS	Transition	Height.	The	

ABS	transition	is	introduced	to	simulate	the	possible	change	in	the	dielectric	due	to	the	printing	

of	the	transition.	Parameter	sweeps	are	performed	by	not	only	varying	the	above	parameters	but	



www.manaraa.com

	 	 48	

also	by	 including	 the	modified	 transition	 in	 just	one	and	both	DDM	connectors.	A	parameter	

sweep	is	performed	with	the	modified	transition	included	in	only	one	of	the	DDM	connectors.	

The	ABS	transition	height	is	varied	while	holding	the	gap	radius	constant	(Figure	4.24).	The	two	

gap	sizes	are	also	shown	in	the	Figure	4.24.	Figure	4.24	shows	that	varying	the	ABS	transition	

height	alone	is	not	enough	to	lower	the	cutoff	frequency.	Changing	the	gap	size	does	not	shift	

the	S21	resonance	significantly.	However,	it	does	have	a	significant	impact	on	the	losses	at	the	

resonance.	

	
Figure	4.24	S-parameter	sweep	of	the	ABS	transition	height	with	one	connector	damaged.	

Gap	Radius:	2.3	mm	
Solid	–	Gap	Size:	0.025	mm,	Dashed	–	Gap	Size:	0.05	mm	
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Figure	4.25	S-parameter	sweep	of	the	gap	radius	with	one	connector	damaged.	

ABS	Transition	Height:	0.15	mm		
Solid	–	Gap	Size:	0.025	mm,	Dashed	–	Gap	Size:	0.05	mm	

	 Figure	4.25	is	a	parameter	sweep	of	the	gap	radius	while	keeping	the	ABS	transition	height	

constant.	 It	 can	be	 seen	 that	 the	gap	 radius	 contributes	greatly	 to	 the	 shift	 in	 the	 resonance	

frequency.	Changing	the	gap	radius	by	0.2	mm	causes	a	shift	in	the	resonance	frequency	by	more	

than	 1	 GHz.	 This	 significant	 change	 is	 enough	 evidence	 to	 show	 that	 the	 change	 in	 the	

measurement	data	vs	simulation	data	is	due	to	the	position	of	the	conductor	gap.	However,	there	

is	the	possibility	that	the	conductor	gap	is	occuring	in	both	of	the	DDM	connectors.		

	 The	conductor	gap	is	included	in	both	DDM	connectors	and	the	same	parameter	sweeps	

are	performed.	As	expected	the	addition	of	another	conductor	gap	causes	greater	disruption	in	

the	losses	across	the	whole	frequency	band.	Figure	4.26	shows	the	simulated	results	of	the	DDM	

connector	structure	while	varying	the	ABS	transition	height.	The	ABS	transition	height	does	affect	

the	losses	but	again	it	is	not	enough	to	change	the	resonance	frequency	alone.	
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Figure	4.26	S-parameter	sweep	of	the	ABS	transition	height	with	both	connectors	damaged.	

Gap	Radius:	2.3	mm		
Solid	–	Gap	Size:	0.025	mm,	Dashed	–	Gap	Size:	0.05	mm	

	
Figure	4.27	S-parameter	sweep	of	the	gap	radius	with	both	connectors	damaged.	

ABS	Transition	Height:	0.15	mm		
Solid	–	Gap	Size:	0.025	mm,	Dashed	–	Gap	Size:	0.05	mm	
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	 Figure	 4.27	 shows	 the	 simulated	 performance	 while	 varying	 the	 gap	 radius.	 The	 S21	

resonance	at	each	gap	radius	is	consistent	with	the	case	where	only	one	modified	DDM	connector	

is	 included.	 The	main	difference	between	one	 and	 two	modified	 connectors	 is	 the	mismatch	

across	the	band.		

	
(a)	

	
(b)	

Figure	4.28	S-parameter	data	of	the	DDM	test	fixture	with	a	damaged	connector.	
(a)	one	modified	transition	(b)	two	modified	transitions	

Solid	–	Simulated,	Dashed	–	Measured	

	 The	combination	that	results	from	the	above	analysis	are	a	gap	size	of	25	μm	and	a	radius	

of	2	mm.	However,	depending	on	the	combination	of	the	conductor	gap	width,	conductor	gap	

radius	and	the	thickness	of	the	ABS	transition,	similar	results	can	be	attained.	Figure	4.28	shows	
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the	 simulation	 results	 of	 the	 modified	 DDM	 connector	 transition	 with	 only	 one	 transition	

modified	 (a)	 and	 both	 transitions	modified	 (b).	 The	 simulation	with	 one	 connector	modified	

matches	the	measurement	data	closer	than	the	DDM	connector	with	both	transitions	modified.	

4.6	Transition	Modeling	

	 In	 the	 previous	 sections,	 the	 connector	 structure	 was	 modeled	 using	 a	 3D	

electromagnetic	solver.	However,	it	is	also	useful	to	create	a	lumped	component	model	of	the	

connector	structure.	When	modeling	any	component,	it	is	beneficial	to	start	at	the	basic	model	

to	get	an	approximation	of	the	behavior	of	the	circuit.	Connectors	and	transmission	lines	are	no	

exception.	Figure	4.29	shows	the	 lumped-element	equivalent	circuit	model	 for	a	transmission	

line	with	which	the	connector	can	be	modeled.	All	TEM	transmission	lines	can	be	modeled	using	

this	configuration.	The	determination	of	the	lumped	components	is	covered	in	many	textbooks	

to	include	[11].	The	DDM	connector	from	Section	4.5	is	determined	to	have	a	transitional	issue	

where	there	is	a	gap	in	the	transition	conductor.	This	gap	is	causing	the	second	dominant	mode,	

TE11,	 to	 propagate	 in	 the	 desired	 operating	 band.	 Here	 its	 shown	 that	 by	 creating	 a	 lumped	

component	model,	it	is	possible	to	represent	the	issue	in	another	form.	

	
Figure	4.29	Lumped	component	model	for	a	transmission	line	

	 The	schematic	in	Figure	4.30	shows	the	overall	circuit	for	the	connector	test	fixture	shown	

in	 Figure	4.20.	 There	 is	 good	agreement	between	 the	3D	model	 and	 the	 lumped	 component	

model	S-parameters	(Figure	4.31).	The	phase	of	S21	for	both	models	also	match	well.		



www.manaraa.com

	 	 53	

	
Figure	4.30	Lumped	component	model	of	the	test	structure	without	the	modified	transition	

	
(a)	

	
(b)	

Figure	4.31	Performance	of	the	lumped	component	model	without	a	modified	transition.		
(a)	S-parameters	(b)	Phase		

Solid	–	Lumped	Component	Model,	Dashed	–	3D	Model	
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	 The	model	is	modified	as	shown	in	Figure	4.32,	to	emulate	the	measurement	data	of	the	

damaged	connector.	The	capacitor	across	the	inductor	is	added	to	model	the	conductor	gap	of	

the	measured	connector.	The	shunt	capacitances	are	also	varied	instead	to	accurately	represent	

the	modified	transition.	Comparisons	of	the	measured	and	simulated	S-parameters	are	shown	in	

Figure	4.33.	The	parallel	capacitor	is	related	to	the	transition	height	and	radius.	For	example,	as	

the	 capacitance	 value	 is	 increased	 this	 has	 the	 same	 effect	 as	 increasing	 the	 radius	 of	 the	

transition.	 Increasing	 the	 transition	 radius	 shifts	 the	 resonance	 lower	 in	 frequency,	 as	 does	

increasing	the	capacitance.	

	
Figure	4.32	Lumped	component	model	of	the	test	structure	with	the	modified	transition	

	
(a)	

Figure	4.33	Performance	of	the	lumped	component	model	with	a	modified	transition.	
(a)	S11	and	S21	Magnitude	(b)	S21	Phase		
Solid	–	Simulated,	Dashed	–	Measured	
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(b)	

Figure	4.33	(Continued)	

4.7	Conclusion	

	 The	connector	design	process	requires	many	steps	and	special	attention	when	utilizing	

additive	manufacturing	processes.	Utilizing	the	TDR	tool	enables	the	designer	to	locate	points	of	

a	discontinuity	within	a	circuit.	Impedance	is	an	important	consideration;	however,	the	electric	

field	configuration	is	just	as	crucial	when	designing	a	good	transition/connector.	Manufacturing	

considerations	 need	 to	 be	 addressed	when	 utilizing	 DDM	 including:	 print	 order	 and	 printing	

limitations.	Electromagnetic	simulators	are	invaluable	tools	that	allow	designers	to	troubleshoot	

discrepancies	 between	 simulated	 and	 measured	 data.	 A	 lumped	 component	 model	 was	

developed	and	proved	useful	in	validating	physical	defects	in	the	connector	prototypes.	
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CHAPTER	5:	DDM	THERMAL	MANAGEMENT	
	

5.1	Introduction	

	 Effective	 thermal	 management	 is	 paramount	 for	 high	 power	 and	 high	 reliability	

applications.	High	heat	applications	utilize	multiple	thermal	management	systems	including:	heat	

spreaders,	heat	sinks,	and	air	cooling,	to	name	a	few	[21].	The	challenge	in	3D	printing	is	that	

thermoplastics	are	 inherently	 insulators	with	 low	thermal	conductivities,	making	 it	difficult	 to	

effectively	remove	heat	from	a	system.	Common	thermoplastics	such	as	ABS	and	polylactic	acid	

(PLA)	 have	 glass	 transition	 temperatures	 below	 110°C.	 There	 are	 higher	 temperature	

thermoplastics	such	as	the	Stratasys	UTLEM	family,	which	is	polyetherimide	(PEI).	However,	the	

higher	temperature	could	cause	issues	in	the	FDM	printing	process.	In	section	5.2,	we	will	discuss	

a	few	thermal	definitions	to	understand	the	work	in	section	5.4.	In	section	5.3,	we	will	discuss	

the	thermal	and	RF	measurements	of	a	Ku-band	power	amplifier	(PA).	In	section	5.4,	a	thermal	

model	is	discussed	to	determine	how	to	overcome	the	challenges	of	a	PA	on	thermoplastics.		

5.2	Thermal	Background	

	 Three	heat	 transfer	modes	 are	 possible:	 conduction,	 convection	 and	 radiation.	 In	 this	

work,	only	conduction	and	convection	are	considered.	Conduction	is	the	transfer	of	heat	across	

a	stationary	solid	or	fluid.	Convection	is	the	transfer	of	heat	from	a	surface	to	a	moving	medium	

[22].	Conduction	is	important	in	the	analysis	of	the	PA	test	fixture	because	it	is	the	main	thermal	

transfer	method.	The	heat	is	generated	on	the	die	of	the	PA	and	travels	to	the	ground	pad	of	the	
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package.	From	there	it	 is	attached	to	a	PCB	where	thermal	vias	transfer	the	heat	to	the	brass	

carrier.	Fourier’s	law	is	the	rate	equation	used	for	heat	transfer.	Fourier’s	law	is	expressed	as:	

	 qg'' = -k cj
cg
	 (5.1)		

where	k	 is	 the	 thermal	 conductivity,	 T	 is	 the	 temperature	and	q	 is	 the	heat	 flux	 [22].	K	 is	 an	

important	material	 property	 that	describes	how	well	 a	material	 can	 transfer	 heat.	ABS	has	 a	

thermal	conductivity	of	0.22	W/m·K	which	means	it	is	ineffective	at	transferring	heat	through	its	

structure.	By	comparison	H20E	epoxy	has	a	thermal	conductivity	between	2.5-29	W/m·K	and	is	

therefore	much	more	effective	at	spreading	heat.	

	 Convection	is	also	important	and	is	used	in	the	simulations	in	section	5.4.	It	defines	the	

heat	transfer	from	the	exposed	surfaces	to	the	air	surrounding	the	test	fixture.	The	convection	

coefficient	 used	 is	 defined	within	 Ansys	Workbench.	 The	 convection	 coefficient	 used	 for	 the	

purposes	of	the	simulations	is	the	“Stagnant	Air	–	Horizontal	Cyl”.	This	option	provided	the	most	

accurate	results	in	the	case	of	the	presented	data.	Figure	5.1	shows	the	plot	of	the	convection	

coefficient	vs	temperature.	

	
Figure	5.1	Convection	coefficient	vs	temperature	used	in	Ansys	Workbench	
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	 Glass	 transition	 temperature	 is	 a	material	 property	 that	 describes	 the	 point	 at	which	

material	begins	to	flow	or	becomes	rubbery	material	 instead	of	a	hard	and	glass	 like	material	

[23].	Operating	at	or	exceeding	this	temperature	will	cause	issues	with	adhesion	between	layers	

as	well	as	mechanical	stresses	such	as	warping.		

5.3	Thermal	and	RF	Measurements	

	 DDM	technology	is	still	relatively	new	to	the	microwave	community	and	a	lot	of	questions	

remain	unanswered.	Increasing	frequency	presents	new	challenges	as	does	increasing	power	and	

temperature.	In	this	section,	a	Ku	band	power	amplifier’s	temperature	and	RF	performance	will	

be	investigated.	The	device	under	test	is	the	Qorvo	TGA-2527SM	power	amplifier.	A	test	fixture	

design	for	the	PA	is	provided	in	the	device	data	sheet	[24].	The	test	fixture	uses	an	8	mil	Rogers	

RO4003	substrate	with	a	relative	dielectric	constant	of	3.38.	As	previously	mentioned,	100%	in-

fill	ABS	has	a	lower	dielectric	constant	of	2.423.	To	maintain	the	characteristic	impedance	of	the	

transmission	lines,	the	substrate	height	was	decreased	to	5	mils.	The	resulting	test	board	is	shown	

in	Figure	5.2.	

	
Figure	5.2	Modified	test	board	used	for	an	ABS	substrate	
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	 A	study	of	the	RF	and	thermal	performance	is	investigated	through	the	variation	of	the	

number	of	vias	used	for	the	ground	pad	of	the	PA.	The	two	configurations	used	have	either	25	or	

16	thermal	vias	(Figure	5.3).		

	
(a)	 	 	 	 	 	 	 (b)	

Figure	5.3	Designs	with	varying	via	numbers.	(a)	25	via	design	(b)	16	via	design	

	 The	 components	 and	 values	used	 in	 the	bias	 networks	 are	documented	 in	 the	device	

datasheet	[24].	The	connectors	used	for	the	test	fixture	are	the	Southwest	Microwave	292-04A-

5	male	SMA	end	launch	connectors.	The	fabricated	and	assembled	test	board	is	shown	in	Figure	

5.4.	A	brass	carrier	is	used	to	diffuse	the	high	temperature	away	from	the	PA.	The	proper	bias	

conditions	for	the	PA	are:	Drain	Voltage	=	6V,	Id	=	650mA	and	Vg	=	-0.55V.	

	
(a)	 	 	 	 	 	 	 (b)	

Figure	5.4	Fabricated	design	with	a	carrier	and	Southwest	Microwave	connectors	attached.	
(a)	Top	view		(b)	Bottom	view	
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	 For	the	thermal	testing	two	different	test	are	performed:	1)	The	PA	is	terminated	in	50	

Ohm	loads	and	DC	biased.	2)	The	PA	is	placed	in	the	measurement	system	of	Figure	5.5	and	tested	

with	the	application	of	a	14GHz	CW	signal.		

	
Figure	5.5	Measurement	setup	for	the	PA	

	 For	the	DC	thermal	testing,	the	PA	is	biased	at	different	drain	currents	to	determine	the	

typical	 temperatures	 for	each	bias	condition.	Since	 the	glass	 transition	 temperature	of	ABS	 is	

105°C,	 it’s	 important	to	determine	if	the	substrate	approaches	that	value.	The	temperature	 is	

measured	from	the	top	of	the	test	fixture	using	the	Keysight	U5855A	TrueIR	Thermal	Imager.		

	 For	temperature	testing	under	DC	bias	conditions	the	device	was	biased	and	a	thermal	

image	was	taken	after	the	temperature	had	stabilized.	Between	each	bias	condition	the	PA	 is	

turned	off	and	allowed	to	return	to	room	temperature	before	the	next	bias	condition	is	applied.	

Table	5.1	summarizes	the	DC	bias	results	for	both	the	16	and	25	via	designs.	While	testing	the	16	

via	design	it	was	determined	that	bias	condition	5	results	in	the	melting	of	the	100%	in	fill	ABS	

substrate,	at	approximately	151°C.	Figure	5.6	shows	a	thermal	image	of	the	device	and	an	image	

of	the	damaged	device.		
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Table	5.1	Temperature	data	of	the	two	designs	while	operated	over	various	bias	conditions.	
The	temperature	data	was	collected	from	the	top	of	the	chip,	with	a	thermal	imager.	

	
	

	
(a)	

	
(b)	

Figure	5.6	Images	of	the	16	via	design	at	bias	condition	5.		
(a)	Thermal	image	(b)	Microscope	Image	
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	 There	 are	 two	 possible	 explanations	 for	 why	 the	 substrate	 does	 not	 melt	 when	 the	

thermal	temperature	reaches	105°C:	1)	The	temperature	is	measured	from	the	top,	which	could	

be	measuring	the	channel	temperature	of	the	die	vs	the	temperature	at	the	ground	of	the	device,	

and/or	2)	The	ground	is	melting	but	it	is	not	detected	due	to	the	chip	covering	the	ground	pad	

and	 surrounding	 area	 underneath	 the	 chip.	 To	 test	 this,	 the	 carrier	 is	 removed	 and	 the	

temperature	 is	measured	 from	 the	bottom	of	 the	 test	 fixture.	Unfortunately,	 the	heat	 is	 not	

diffused	away	from	the	device	efficiently	and	as	a	result	the	substrate	melted	before	reaching	

the	150mA	drain	current	condition.	A	safer	way	to	determine	the	temperature	underneath	the	

device	is	to	bias	the	PA	with	the	carrier	attached	and	wait	for	the	temperature	to	stabilize.	Then,	

turn	off	the	device	and	immediately	measure	the	temperature.	The	results	of	this	technique	are	

covered	later	in	this	section.	

	 Table	5.1	 is	used	to	determine	a	safe	bias	condition	to	test	the	device	under	RF	drive,	

Table	5.1	 is	used	to	determine	a	safe	bias	condition.	Bias	condition	2	 is	used	due	to	 the	high	

temperature	of	the	16	via	design.	Figure	5.7	shows	the	temperature	vs	output	power	of	the	two	

designs.	The	25	via	design,	with	a	drain	current	of	100mA,	is	about	13°C	cooler	than	the	16	via	

design	at	16dBm	of	output	power.	Since	the	25	via	design	has	superior	thermal	performance,	the	

device	is	biased	at	multiple	drain	currents	as	shown	in	Figure	5.7b.	
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(a)	

	
	(b)	

Figure	5.7	Temperature	vs	output	power	for	the	two	designs.		
(a)	16	via	design	(b)	25	via	hole	design	

	 Measurements	of	the	gain,	output	power	and	the	associated	temperatures	under	the	safe	

operating	conditions	of	 the	PA	are	performed.	Like	DC	testing,	 the	temperature	 is	allowed	to	

stabilize	before	a	temperature	measurement	is	taken.	Unlike	DC	testing,	the	temperature	needs	

to	 be	 sampled	 at	 each	 input	 power	 of	 all	 bias	 conditions.	 The	 device	 is	 returned	 to	 room	

temperature	between	bias	conditions	not	between	input	power	changes.		
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	 The	system	setup	 for	 the	RF	and	temperature	testing	 is	shown	 in	Figure	5.5.	The	VNA	

output	power	is	varied	from	-15	dBm	to	5	dBm	with	increments	of	2	dBm.	A	20	dB	attenuator	is	

added	 to	 the	 system	 to	 ensure	 the	Mini-Circuits	 amplifier	 isn’t	 driven	 into	 compression.	 The	

Anritsu	power	meter	(ML2438A)	 is	calibrated	to	ensure	accurate	measurement	of	the	powers	

through	the	system.	The	output	power	of	the	Mini-Circuits	amplifier	is	measured	with	an	Anritsu	

power	sensor	(MA2474A)	and	Anritsu	power	meter.	These	powers	are	used	to	determine	the	

input	powers	of	the	PA.	A	30	dB	attenuator	is	added	between	the	PA	and	the	power	sensor	to	

prevent	any	damage	to	the	test	equipment.	The	output	power	of	the	VNA	is	varied	and	the	output	

power	of	the	PA	is	measured.	The	gain	and	output	power	vs	input	power	are	calculated	and	are	

plotted	in	Figure	5.8	for	both	PA	designs.	The	PA	doesn’t	achieve	the	performance	provided	in	

the	datasheet.	Due	to	the	temperature	limitations,	the	PA	can’t	be	biased	to	the	recommended	

bias	 conditions.	 A	 material	 with	 a	 higher	 glass	 transition	 temperature	 would	 extend	 the	

performance	of	the	amplifier.	

	
(a)	

Figure	5.8	Output	power	and	gain	vs	input	power	for	the	two	designs.		
(a)	16	via	design	(b)	25	via	hole	design	
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(b)	

Figure	5.8	(Continued)	

	 When	 biasing	 the	 PA	 to	 Id	 =	 250	mA	 the	 device	 reaches	 a	maximum	 temperature	 of	

approximately	140°C.	To	determine	whether	it’s	the	die	itself	or	the	substrate	that	is	reaching	

this	temperature	a	different	test	is	performed.	The	PA	is	powered	on	to	a	bias	condition	of	Id=250	

mA.	After	the	temperature	stabilizes	a	thermal	image	is	recorded.	The	device	is	then	powered	

off	and	another	thermal	image	is	recorded.	If	the	temperature	is	near	the	temperature	of	the	

device	when	it	is	on,	it	can	be	concluded	that	the	substrate	is	that	temperature.	However,	if	the	

temperature	is	substantially	lower,	then	it	can	be	concluded	that	the	device	is	the	contributor	to	

the	thermal	profile	and	the	amplifier	can	be	driven	to	higher	temperatures.	Figure	5.9	and	5.10	

show	the	thermal	image	and	profile	of	the	DUT	while	the	device	is	on	and	directly	after	the	device	

is	turned	off,	respectively.	Figure	5.9b	shows	a	maximum	temperature	of	140°C	when	the	device	

is	on.	Figure	5.10b	shows	a	maximum	temperature	of	approximately	73°C	directly	after	the	device	

is	 turned	 off.	 Figure	 5.10a	 suggests	 that	 the	 temperature	 of	 the	 substrate	 isn’t	 reaching	 the	
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temperature	 of	 Figure	 5.9a.	 However,	 depending	 on	 the	 thermal	 transient	 response	 of	 the	

material,	the	temperature	may	change	too	quickly	to	detect	with	the	thermal	imaging	method.	

	
(a)	 	 	 	 	 	 	 (b)	

Figure	5.9	Thermal	image	and	temperature	profile	with	the	PA	on.	(a)	Thermal	image	of	the	PA		
test	board	with	carrier	at	250	mA	(Id)	(b)	Temperature	distribution	along	the	line	of	the	thermal		

image	

	
(a)	 	 	 	 	 	 (b)	

Figure	5.10	Thermal	image	and	temperature	profile	with	the	PA	off.	(a)	Thermal	image	of	the		
PA	test	board	with	carrier,	turned	off	after	Figure	5.9	image	is	taken	(b)	Temperature	

	distribution	along	the	line	of	the	thermal	image	

	 The	limiting	factor	of	the	PA	is	the	temperature	at	which	it	can	operate.	A	few	solutions	

to	this	problem	are	possible:	use	a	material	that	has	a	higher	glass	transition	temperature,	design	

a	 heat	 sink	 to	 pull	 heat	 away	 from	 the	 top	 of	 the	 device,	 or	 possibly	 electroplate	 the	 epoxy	

elements.	To	determine	the	most	effective	approach,	a	simulation	model	can	be	used	to	find	the	

most	feasible	option.	
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5.4	Power	Amplifier	Thermal	Study	

	 In	this	section,	the	thermal	performance	of	an	amplifier	model	is	investigated.	The	ability	

to	model	and	predict	the	performance	of	an	amplifier	is	invaluable.	The	model	is	validated	using	

measurement	data.	A	validated	model	allows	the	designer	to	determine	the	thermal	behavior	of	

the	 amplifier	 with	 changes	 in	 the	 number	 of	 vias,	 the	 substrate	materials,	 and	 the	 use	 of	 a	

carrier/heat	sink.	It	is	shown	that	all	the	above	design	variables	can	be	modeled	with	software	to	

perform	tradeoff	analysis	of	a	given	design.	

	 The	topology	of	a	generic	quad	flat	no-leads	(QFN)	package	is	shown	in	Figure	5.11.	In	this	

topology,	a	MMIC	die	is	epoxied	to	the	package	grounding	pad	with	wire	bonds	connecting	the	

various	parts	of	the	chip	to	the	package	pads.	The	entire	die	including	wire	bonds	is	encapsulated	

in	the	package	case.	This	QFN	amplifier	topology	is	mounted	to	a	printed	circuit	board	(PCB)	using	

solder	or	epoxy.	The	PCB	has	a	large	ground	plane	and	thermal	vias	to	diffuse	the	heat	generated	

on	the	die	away	from	the	chip.	Lastly,	a	carrier/heat	sink	is	used	to	increase	the	flow	of	heat	away	

from	the	package.	

	
Figure	5.11	Basic	topology	of	the	QFN	package	mounted	on	a	substrate	and	carrier	

	 The	1	W	Ku-band	PA	is	modeled	along	with	a	5	mil	DDM	PCB	and	brass	carrier	in	Ansys	

Workbench	 (Figure	 5.12).	 The	 various	 materials,	 thermal	 conductivities	 and	 glass	 transition	

temperatures	 are	 listed	 in	 Table	 5.2.	 Additionally,	 various	 PA	 structures	 and	 dimensions	 are	
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shown	in	Figure	5.13.	It	should	be	noted	that	the	dimensions	of	the	package	and	the	ground	pad	

of	the	package	are	the	only	dimensions	given	in	the	datasheet.	Therefore,	some	approximations	

were	used	and	these	approximations	were	tuned	to	match	measurement	data.	

	
Figure	5.12	Ansys	Workbench	view	of	the	simulation	model	

Table	5.2	Material	properties	of	the	various	components	of	the	PA	test	fixture	

Part	 Material	 Thermal	Conductivity	
(W/m·K)	

Glass	Transition	
Temperature	(°C)	

Package	 Polyethylene	 0.4	 -	
Die	 GaN	 260	 -	

Epoxy	 H20E	 2.5	 >80	
Vias	 H20E	 2.5	 >80	

Ground	Package	 Tin	 64	 -	
Substrate	 100%	In-fill	ABS	 0.22	 105	
Substrate		 Stratasys	ULTEM	9085	 ≈0.22	 186	
Substrate	 Stratasys	ULTEM	1010	 ≈0.22	 215	
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Figure	5.13	QFN	stack	up	and	the	associated	dimensions	

	 Various	boundary	conditions	are	used	to	model	the	PA	test	fixture.	A	1.5W	thermal	source	

is	applied	to	the	top	face	of	the	die.	The	source	power	is	determined	by	the	drain	current	and	

voltage.	 All	 other	 exposed	 surfaces	 are	 assigned	 a	 convection	 boundary.	 Each	 touching	

component	 is	 assigned	 a	 “bonded”	 interface.	 This	 boundary	 does	 not	 assume	 any	 thermal	

resistance.	All	heat	will	travel	across	component	interfaces	unperturbed,	in	the	normal	direction.	

The	simulation	results	of	the	25	and	16	via	design	are	shown	in	Figure	5.14	and	5.15,	respectively.	

The	results	are	compared	to	the	physical	results	for	bias	condition	5	in	Table	5.1.	The	maximum	

temperature	of	the	25	via	hole	model	is	close	to	the	physical	model.	However,	the	16	via	design	

varies	by	32°C	from	simulation	to	measurement.	A	few	causes	that	can	explain	this	variation	are	

discussed	next.	
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Figure	5.14	25	via	hole	design	with	a	1.5W	heat	source	applied	to	the	top	face	of	the	die.		

Temperature	range:	78.409°C	–	103.51°C	

	
Figure	5.15	16	via	hole	design	with	a	1.5W	heat	source	applied	to	the	top	face	of	the	die.		

Temperature	range:	78.898°C	–	115.26°C	

	 The	differences	between	the	16	via	design	measurement	and	modeled	performance	can	

be	 explained	 by	 studying	 the	 effects	 of	 epoxy	 area	 and	 conductivity.	When	 assembling	QFN	

packages,	the	amount	of	epoxy	used	and	whether	the	chip	was	pressed	flat	will	determine	the	

footprint	of	the	epoxy	(Figure	5.16).	The	curing	temperature	and	time	used	for	the	epoxy	will	

affect	the	conductivity	of	the	epoxy.	As	a	result,	the	thermal	diffusion	away	from	the	chip	will	be	

reduced,	increasing	the	overall	temperature.	Two	simulations	will	be	performed	to	demonstrate	

the	effects	that	the	epoxy	area	coverage	and	conductivity	have	on	the	thermal	properties	of	the	

PA.	
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Figure	5.16	PA	pad	layout	with	varying	epoxy	areas	

	 An	epoxy	interface	is	added	between	the	PA	ground	pad	and	the	PCB	thermal	pad.	The	

width	and	height	of	the	epoxy	interface	will	be	varied	to	show	the	temperature	changes	caused	

by	each	configuration.	The	lengths	and	widths	are	equal	varying	from	1	mm	to	2	mm	at	0.5	mm	

steps.	Figures	5.17	-	5.19	show	the	simulation	results	of	the	16	via	design	with	4	mm2,	2.25	mm2	

and	1	mm2	areas,	respectively.	As	the	size	decreases	the	maximum	temperature	increases.	While	

the	temperature	does	increase	the	maximum	temperature,	the	temperature	at	the	edges	of	the	

PA	footprint	isn’t	large	enough	to	result	in	the	ABS	melting	as	experienced	experimentally.	The	

area	does	still	contribute	to	the	temperature	increase.	However,	the	area	alone	cannot	be	the	

cause	of	the	temperature	difference	between	the	model	and	measurement	data.	

	



www.manaraa.com

	 	 72	

	
Figure	5.17	16	via	hole	design	with	1.5	W	applied	to	the	top	face	of	the	die	and	a	4	mm2	epoxy		

area.	Temperature	range:	78.823°C	–	117.62°C	

	
Figure	5.18	16	via	hole	design	with	1.5	W	applied	to	the	top	face	of	the	die	and	a	2.25	mm2		

epoxy	area.	Temperature	range:	78.68°C	–	125.99°C	

	
Figure	5.19	16	via	hole	design	with	1.5	W	applied	to	the	top	face	of	the	die	and	a	1	mm2	epoxy		

area.	Temperature	range:	78.199°C	–	159.46°C	
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	 Another	 cause	 of	 the	model	 vs	measurement	 differences	 is	 the	 changes	 in	 the	 epoxy	

conductivity.	Depending	on	the	cure	temperature,	time,	and	number	of	cycles	the	conductivity	

of	the	epoxy	can	change.	According	to	Epotek	H20E	datasheet,	there	are	two	different	thermal	

conductivities,	2.5	W/mK	and	29	W/mK	[6].	The	lower	value	is	measured	using	the	Laser	Flash	

method.	Where	the	larger	value	is	based	on	thermal	resistance	data	[6].	Three	values	are	chosen	

between	this	range	to	determine	the	effect	of	conductivity	on	the	thermal	performance	and	what	

conductivity	may	contribute	to	differences	of	the	model	to	measurement.	Figures	5.20-5.22	show	

the	simulation	 results	of	 the	PA	with	conductivities	of	29,	15,	and	5	W/mK,	 respectively.	The	

simulations	 show	 that	 this	 may	 be	 a	 more	 plausible	 explanation	 for	 the	 measurement	

differences.	Although,	it	may	be	a	combination	of	both	the	area	of	the	applied	epoxy	and	the	

conductivity	due	to	curing	configurations.	Based	on	this	analysis,	the	thermal	conductivity	used	

for	H20E	is	29	W/mK	and	the	epoxy	area	is	10.9	mm2	(area	of	QFN	ground	pad).	

	
Figure	5.20	16	via	hole	design	with	1.5	W	applied	to	the	top	face	of	the	die	and	a	thermal		

conductivity	of	29	W/mK.	Temperature	range:	78.895°C	–	115.17°C	
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Figure	5.21	16	via	hole	design	with	1.5	W	applied	to	the	top	face	of	the	die	and	a	thermal		

conductivity	of	15	W/mK.	Temperature	range:	70.644°C	–	125.11°C	

	
Figure	5.22	16	via	hole	design	with	1.5	W	applied	to	the	top	face	of	the	die	and	a	thermal		

conductivity	of	5	W/mK.	Temperature	range:	53.345°C	–	148.67°C	

	 To	demonstrate	the	25	via	model	accuracy,	Figure	5.23	shows	the	modeled	vs	measured	

thermal	performance	over	multiple	power	dissipation	ranges.	The	plot	shows	that	over	the	bias	

conditions	of	 Table	 5.1,	 the	model	 predicts	 the	performance.	 The	data	 validates	 the	 thermal	

model	and	provides	certainty	in	the	accuracy	of	the	16	via	model,	although	the	data	does	not	

match	exactly.	
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Figure	5.23	Maximum	temperature	vs	power	dissipated	for	the	25	via	design	

	 With	 the	 model	 verified,	 it	 can	 be	 used	 to	 determine	 a	 substrate	 suitable	 for	 high	

temperature	operation.	The	power	dissipation	is	increased	to	3.5	W	to	simulate	the	PA	working	

at	the	proper	bias	condition	and	under	RF	drive.	Figures	5.24	and	5.25	show	the	simulation	results	

of	 the	 25	 and	 16	 via	 designs,	 respectively.	 Table	 5.2	 shows	 the	 material	 properties	 of	 two	

different	types	of	ULTEM	materials.	Both	materials	can	be	used	in	the	future	for	the	PA	assuming	

the	design	uses	25	vias	and	a	carrier.	Figure	5.26	shows	the	simulation	results	of	the	25	via	design,	

with	1.5	W	of	power	dissipation	without	a	carrier.	Figure	5.26,	shows	that	a	carrier	needs	to	be	

used,	whether	it’s	metal	or	another	material	with	a	high	thermal	conductivity.	
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Figure	5.24	25	via	design	with	3.5	W	applied	to	the	top	face	of	the	die.		

Temperature	range:	125.44°C	–	183.05°C	

	
Figure	5.25	16	via	design	with	3.5	W	applied	to	the	top	face	of	the	die.	

Temperature	range:	124.04°C	–	206.27°C	

	
Figure	5.26	25	via	design	with	1.5	W	applied	to	the	top	face	of	the	die	without	a	carrier.	

Temperature	range:	56.779°C	–	371.18°C	
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5.5	Conclusion	

	 As	the	trend	of	higher	power	and	smaller	devices	grows	DDM	technology	needs	to	adapt	

to	 accommodate	 these	 changes.	 The	 limiting	 factor	 of	 power	 amplifiers	 on	DDM	PCBs	 is	 the	

temperature	 that	 the	 thermoplastic	 can	 handle.	 The	 RF	 performance	 suffered	 due	 to	 the	

temperature	limitation.	However,	it’s	possible	that	if	a	different	thermoplastic	is	used	that	the	

PA	would	be	able	to	be	biased	at	its	proper	voltage	and	current	level.	The	model	created	in	Ansys	

Workbench	allows	the	designer	 to	determine	whether	a	specific	substrate	or	carrier/heatsink	

configuration	will	improve	the	thermal	performance.	
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CHAPTER	6:	CONCLUSION	
	

6.1	Summary	

	 In	summary,	DDM	technology	shows	promise	in	the	RF	and	microwaves	field.	The	ability	

to	create	highly	customized	low	cost	RF	circuits	is	invaluable.	Chapter	3	shows	that	the	overall	

size	 of	 the	 DDM	 hybrid	 coupler	 is	 slightly	 larger	 than	 traditional	 PCB	 coupler.	 However,	 if	 a	

thermoplastic	with	a	higher	relative	dielectric	constant	is	used	the	size	difference	wouldn’t	be	as	

substantial.	The	performance	between	the	PCB	and	DDM	couplers	were	similar,	showing	promise	

for	3D	printed	RF	components	at	2.45	GHz.	

	 Chapter	 4	 covered	 the	 design,	 measurement	 and	 modeling	 of	 the	 DDM	 Ku	 band	

connector.	The	ability	to	tune	the	connector	using	the	TDR	tool	is	invaluable.	It	provides	insight	

into	what	is	happening	within	the	connector	at	discontinuities.	The	DDM	connector	has	less	than	

0.45	dB	of	insertion	loss	up	to	14	GHz	and	less	than	10	dB	of	return	loss	up	to	15	GHz.	Even	though	

the	connector	showed	issues	with	the	transition,	the	performance	is	still	reasonable	for	a	first	

iteration	design.	

	 Chapter	5	demonstrated	the	thermal	performance	of	the	PA	test	fixture	with	a	varying	

number	 of	 vias.	 A	 thermal	 model	 was	 created	 in	 Ansys	 Workbench	 which	 demonstrates	

agreement	between	simulated	and	measurement	data.	The	ability	to	use	this	model	to	switch	

material	types	is	invaluable	in	the	evaluation	of	future	tests.	Work	still	needs	to	be	done	in	the	
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high-power	amplifier	field	of	3D	printing.	But,	the	work	of	Chapter	5	provides	a	foundation	for	

future	research.	

6.2	Recommendations	for	Future	Works	

	 Follow	on	work	in	the	areas	of	Chapters	4	and	5	will	be	beneficial	to	the	future	of	DDM.	A	

major	issue	that	arose	in	the	connector	manufacturing	is	the	printing	of	the	embedded	transition	

in	 Chapter	 4.	 Spraying	 conductive	 ink	 would	 solve	 a	 lot	 of	 the	 issues	 with	 the	 transition.	 A	

different	 connector	 or	 orientation	would	 also	 be	 good	 suggestions.	 A	 SMP	 or	 SMP-M	would	

probably	be	a	good	alternative.	SMP-M	has	an	upper	operating	frequency	of	40	GHz	which	would	

push	 3D	 printing	 to	 higher	 frequencies.	 Finally,	 end-launch	 designs	 should	 be	 considered	 for	

future	work.	

	 Chapter	5	future	work	would	include	further	development	of	a	thermal	model	for	the	PA	

device.	Validating	the	model	to	measurement	data	for	multiple	thermoplastics.	The	model	could	

be	 further	 developed	 by	 a	 mechanical	 engineer	 to	 provide	 a	 modeling	 process	 for	 chips	 of	

different	powers	and	material	technologies.		
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APPENDIX	A:	SIMULATION	AND	ASSEMBLY	
	

A.1	Introduction	

	 Throughout	 the	 research	 there	 was	 multiple	 lessons	 learned	 when	 pertaining	 to	

simulations	 and	 assembly	 of	 DDM	 parts.	 From	meshing	 options	 to	 the	 do’s	 and	 do	 not’s	 of	

assembling	with	epoxy.	Section	A.2	will	cover	the	simulation	issue	that	was	experienced	in	the	

research.	 Section	A.3	 covers	 assembly	 issues	 and	 techniques	used	 throughout	 the	work.	 This	

appendix	is	written	to	minimize	the	issues	that	future	students	may	run	into	during	their	research	

in	DDM	and	RF	design.	

A.2	Simulation	Issues	

	 The	 major	 issue	 that	 was	 experienced	 with	 simulations	 was	 with	 ADS	 Momentum	

settings.	A	 few	settings	can	be	adjusted	 to	ensure	 that	 students	do	not	make	mistakes	when	

trying	 to	 match	 simulation	 and	 measurement	 data.	 The	 first	 option	 (Figure	 A.1)	 within	 the	

EMSetup	of	ADS	is	the	“Simplify	the	layout”	option.	This	option	will	result	in	the	layouts	mesh	

being	reduced.	However,	in	doing	so,	the	mesh	will	not	accurately	represent	the	circuit	(Figure	

A.2).	The	cells	per	wavelength	is	set	to	60	and	the	meshing	frequency	is	3	GHz.	These	settings	are	

more	than	sufficient	to	solve	the	coupler	circuit.	However,	since	the	“Simplify	the	layout”	option	

is	selected	it	overrides	the	cells	per	wavelength	erroneously.	The	same	circuit	and	options	are	

used	and	the	mesh	regenerated	without	the	“Simplify	the	layout”	option	and	it	is	seen	that	the	

mesh	 is	 accurately	 following	 the	 geometry	 (Figure	 A.3).	 This	 may	 seem	 like	 common	 sense,	
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however	when	using	the	EM	Co-simulation	option	the	mesh	isn’t	shown.	To	avoid	issues,	it’s	best	

to	generate	the	mesh	prior	to	running	any	simulations	to	ensure	an	accurate	mesh	is	used.	

	
Figure	A.1	EM	setup	options	to	avoid	simplifying	the	layout	mesh	

	
Figure	A.2	Mesh	resulting	from	the	“Simplify	the	layout”	option	
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Figure	A.3	Mesh	resulting	from	not	selecting	the	“Simplify	the	layout”	option	

	 The	 other	 options	 didn’t	 cause	 errors,	 they	 are	 just	 recommendations.	 The	 cells	 per	

wavelength	 is	obviously	 important	because	 if	 it’s	 two	 low	the	same	result	will	occur	as	did	 in	

Figure	A.2.	Another	setting	is	the	edge	mesh	option.	This	provides	mesh	spacing	between	the	

edges	and	the	inner	conductor.	It	seems	to	provide	a	more	uniform	mesh.	The	final	option,	which	

is	unchecked,	is	the	“Mesh	reduction”	option.	Although,	it	didn’t	result	in	an	error	in	my	circuit	

use	this	option	with	caution.	Figure	A.4	shows	the	effect	of	using	the	Mesh	reduction.		

	
Figure	A.4	Mesh	resulting	from	selecting	the	“Mesh	reduction”	option	
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A.3	Assembly	and	Fabrication	Techniques	

	 Following	a	few	techniques	in	assembly	can	improve	the	end-product	of	your	design.	The	

first	tip	is	used	when	using	a	milling	machine	to	fabricate	a	design.	Instead	of	the	milling	machine	

removing	 the	 excess	 conductor	 from	 a	 laminate,	 it	 is	 nicer	 to	 just	 route	 the	 traces	 of	 the	

microstrip	lines	and	use	an	Exacto	knife	to	peel	the	excess	conductor	off.	This	isn’t	a	technique	I	

came	up	with,	this	 is	something	taught	to	me	by	Yaniel	Vega.	This	technique	will	 improve	the	

overall	uniformity	of	the	substrate	and	minimize	any	rough	surfaces	around	the	microstrip	lines.		

	 Assembly	with	H20E	sometimes	is	quite	a	challenge.	Having	assembled	over	1000	parts	

myself,	I	know	how	tedious	the	task	can	be.	When	mixing	the	different	parts	of	the	epoxy	it	is	

extremely	 important	 that	 the	 epoxy	 is	 mixed	 well.	 If	 it	 is	 not	 mixed	 properly,	 connectors	

especially,	will	easily	separate	from	the	substrate	and	transmission	lines.	Another	consequence	

of	 not	mixing	 properly	 is	 that	 the	 H20E	 seems	 to	 crack	 a	 lot	 easier.	 This	 cracking	will	 cause	

connectors	 to	become	 intermitted	and	ultimately	 cause	 issues	with	measurement	data.	Cure	

time	and	the	number	of	cycles	in	and	out	of	the	oven	is	also	important.	With	the	glass	transition	

temperature	of	ABS	being	105°C,	the	temperature	used	to	cure	H20E	was	87°C.	Technically	ABS	

is	OK	at	90°C,	but	as	Figure	A.5	shows,	the	adhesion	between	layers	is	often	compromised.	Try	to	

reduce	 the	 number	 of	 cure	 cycles	 for	 the	 part,	 however	 this	 is	 sometimes	 unavoidable.	 If	 a	

mistake	is	made	when	mounting	a	lumped	component	or	connector	(e.g.	shorting	a	transmission	

line	gap),	put	the	part	in	the	oven	for	1hr	at	87°C	or	finish	the	other	components	and	cure	for	the	

full	duration.	Remove	the	mistake	AFTER	the	part	has	been	cured.	This	will	save	a	lot	of	time	and	

trouble.	It	is	a	lot	easier	to	remove	the	hardened	epoxy	that	to	try	to	remove	the	uncured	epoxy	

with	chemicals	or	by	wiping	it	away.		
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Figure	A.5	Top	ABS	layer	separating	from	the	ground	plane	

	 When	assembling	QFN	packages	two	techniques	should	be	considered.	First,	fill	the	via	

holes	with	H20E	prior	to	mounting	the	QFN.	This	will	ensure	all	vias	are	connected	to	ground	

providing	a	thermal	path	for	heat	dissipation.	Cure	the	vias	before	attaching	the	QFN	package.	If	

the	 vias	 aren’t	 cured	 without	 the	 QFN	 attached	 the	 H20E	 may	 not	 fully	 cure	 reducing	 the	

conductivity.	Curing	the	vias	separately	also	ensures	that	the	epoxy	applied	to	the	ground	pad	

will	 be	 used	 for	 the	 attachment	 of	 the	 QFN	 device	 not	 filling	 the	 vias,	 possibly	 causing	 a	

substandard	connection.	Second,	attach	the	QFN	package	and	cure	the	epoxy	again.	If	this	step	

isn’t	 performed,	 it	 will	 be	 extremely	 hard	 to	make	 the	 pad	 connections	without	moving	 the	

package	around.	Ensure	that	the	epoxy	is	spread	in	a	somewhat	thin	layer.	The	epoxy	spreading	

needs	 to	be	 limited	when	pressing	 the	QFN	 into	place,	 to	avoid	shorting	 the	ground	pad	and	

signal	lines.	Ensure	that	the	QFN	package	is	sitting	as	flat	as	possible.	It	isn’t	acceptable	to	have	

it	sitting	off	high	off	the	substrate.	This	will	decrease	the	thermal	diffusion	away	from	the	chip	

and	likely	worsen	the	RF	performance.	Lastly,	make	the	connections	to	the	pads.	Again,	it	is	OK	if	

two	pads	short	together.	 Just	bake	the	circuit	and	remove	the	short	after	the	epoxy	 is	cured.	

Another	advantage	of	assembling	the	QFN	in	multiple	steps	is	that	shorts	between	the	ground	

pad	 and	 signal	 traces	 can	 be	 checked	 prior	 to	 connecting	 the	 pads	 of	 the	 package	 to	 their	

respective	traces.		
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APPENDIX	B:	DDM	CONNECTOR	PRINTING	
	

B.1	3D	Printing	Procedure	

	 A	single	0.1	μm	base	layer	consisting	of	100%	in-fill	ABS	layer	is	printed	with	the	first	layer	

being	50	μm	and	two	subsequent	layers	being	25	μm	each.	The	second	layer	consists	of	a	25	μm	

CB028	microstrip	line	is	micro-dispensed	and	dried.	A	mixture	of	ABS	and	acetone	is	used	to	cover	

the	base	layer	and	microstrip	line.	This	mixture	is	used	to	improve	the	adhesion	between	layers	

containing	micro-dispensed	conductors	and	the	next	ABS	 layer.	The	125	μm	substrate	 layer	 is	

printed	 next	 (100%	 in-fill	 ABS)	 followed	 by	 the	 ground	 plane,	 which	 is	 micro-dispensed	 and	

allowed	to	dry.	The	two	DDM	connectors	(50%	in-fill	ABS)	are	outlined	using	100%	in-fill	ABS.	The	

semi-circular	 transition	 is	printed	 in	a	staircase	fashion	with	a	z-axis	 resolution	of	25	μm.	The	

CB028	paste	is	micro-dispense	over	the	transition	and	dried.	When	the	transition	(100%	in-fill	

ABS)	is	finished,	the	50%	in-fill	layers	are	continued	in	50	μm	steps	to	finish	the	remainder	of	the	

connector.	The	conductive	 ink	on	the	outer	portions	of	the	connectors	and	via	holes	are	post	

processed	 by-hand.	 The	 mechanical	 structures	 are	 printed	 separately	 from	 the	 connector	

structure	and	attached	using	adhesive	for	mechanical	strength.	The	nScrypt	3Dn	printer	can	print	

the	mechanical	structures	in	situ.	The	decision	to	print	the	structures	separately	was	due	to	the	

post	processing	required	to	ensure	the	connectors	fit	was	correct.	
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